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I. INTRODUCTION

Designing or analyzing the response of an electronic system to some kind

of electromagnetic interference such as the nuclear electromagnetic pulse (EMP)

is a complex problem, because of so many individual components and intercon-

nections. An example of such a complex system is the multiconductor cable

network inside an aircraft.

When an aircraft is in an EMP environment, the cables inside the air-

craft will be excited by an electromagnetic field which penetrates the air-

craft body through a large number of penetrating conductors, small antennas,

apertures, and by diffusion through the skin of the aircraft. Many parameters

determine the response of a multiconductor cable; these include polarization,

angle of incidence, planarity and spectral contents of the incident field;

number of points of entry (POEs); size, shape and location of POEs; physical

properties of the transmission line and the surrounding medium; and the con-

figuration of load impedances. This large number of variables and the complex-

ity of the multiconductor cables create problems in gaining insight into how

to control the system performance in an electromagnetic environment.

In evaluating the system vulnerability to EMP, it is often desirable to

evaluate upper bounds on the problem rather than compute the full coupling

and interaction evaluation for the cases of interest so as to determine the

system survivability/vulnerability with high confidence. In most of the

cases the latter may be effectively impossible due to system complexity and

lack of complete and correct definition. To deal with this complexity one

needs ways to identify and deal with a set of important variables which, if
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controlled, control the system performance. An approach to this problem has

. been developed (Ref. 1) which can be referred to as electromagnetic topology.

Having defined the electromagnetic topology and the related interaction

sequence diagram (graph), one can write a general matrix equation (BLT equa-

tion, Ref. 1). The resulting supermatrix equation evaluates into an approxi-

mate solution which shows the dependence of the system performance on system

shielding parameters. A BLT equation for transmission-line networks within

the system can also be formulated (Ref. 2). This equation shows the dependence

of the cable network response on the induced sources, physical configuration

of the cables in the network, and the load configurations. Certain approxi-

mate bounds for the termination voltages and currents can be obtained from

norm concepts (Ref. 3).

In Reference 4, upper bounds were obtained for voltages and currents

at terminations of a multiconductor transmission line excited by a single

aperture, but bounds were not established for physical parameters of the

line. For a moderately mismatched termination, the upper bound for the ter-

mination voltage was 10 times the actual maximum voltage.

This report establishes upper and lower bounds on the voltages and

currents at terminations of a multiconductor transmission-line network

excited by an external electromagnetic field. The general matrix equation

(BLT equation) is used as the basis for establishing upper and lower bounds

on the termination voltages and currents. Upper and lower bounds on forward

and backward traveling combined voltage waves are also established. These

bounds are obtained in terms of upper bounds of several parameters, such as

the source, load impedances, characteristic impedance of the line, etc.

Upper bounds on these parameters are established for some special cases.

6
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In Section II, the equations governing the response of a general multi-

conductor transmission-line network are discussed. In Section III, the upper

and lower bounds for the combined voltages, voltages, and currents are

obtained in terms of the induced sources, physical properties of the cable

network, and the load configurations. The bounds on the ratio of the maxi-

mum pin current to the bundle current are also discussed. In Sections IV

and V, bounds are obtained for two special cases of a general multiconductor

transmission-line network, namely, a uniform section of a multiconductor

transmission line and a multiconductor transmission line with a branch. Pro-

cedures for obtaining bounds on parameters of the line such as the

characteristic-impedance matrix, reflection-coefficient matrix, and the

scattering matrix are discussed. Bounds for induced sources are also dis-

cussed for these two cases. In Section VI, the upper and lower bounds are

computed for a uniform three-conductor line terminated at both ends in diagonal

loads for several load configurations. These bounds are compared with the cal-

culated maximum values using the QV7TA computer code (Ref. 5).

J7



II. GENERAL MULTICONDUCTOR TRANSMISSION-LINE NETWORK EQUATIONS

This section reviews the multiconductor transmission-line

equations for a general network. The detailed derivation of these equations

is discussed in Reference 2. These equations form a basis for the evaluation

of upper bounds on voltages and currents at terminations of a multiconductor

line network.

1. PROPAGATION ON A UNIFORM N-WIRE TRANSMISSION LINE

First consider a single section of an N-wire transmission line.

An N-wire transmission line is one that consists of N conductors and a refer-

ence conductor (or an equivalent one). Figure 1 shows aper-unit-length equiva-

lent circuit of the line with distributed sources. The equations governing

the voltage and current propagation on an N-wire transmission line are the

generalized multiconductor transmission-line equations:

d
d-i (n(Zs)) = -(Ynm(S)) (Vn(zs)) + (I s(z,s)) (2)

d (Vn(z s)) = (Zn,m(S)) (In(z 's)) + (Vns)'(zls)) (2)

where

S = jW

z = position along the line

n (z,s)) = current vector at z

(V (z,s)) = voltage vector at z
(Y'(S)) = per-unit-length shunt admittance matrix

(Zn,m(s)) = per-unit-length series impedance matrix

A 1 8



(V (z,s))n n

(z~s)) + (Z' (zss)

, O

s =(T(s)' (z,s))
n

Figure 1. The per-unit-length model of a multiconductor transmission line.

(l(S)'(z,s)) = per-unit-length shunt current source vectorn
(v S)(z,s)) : per-unit-length series voltage source vector

Note that all vectors are of dimension N, and all matrices are N x N.

By algebraic manipulations of Equations 1 and 2, an equation for com-

bined voltages can be obtained as follows (Ref. 2):

[(nm + q(I(n (s)) . (n Zs))q (v S)'(zS))q (3)

nm dz cn,m n q n q

n I forn (m

0 for n m

q + for forward and backward traveling combined N-vector
waves, respectively

9



fnm = (*2(rims(L2(5

(Zs) (0n(z,s)) + q( (s)) (ir (Z's))

(6)
(V(s) (z,s)) =(V(s) (z,s)) + q( (s)) n ( ,s))nq n ~

(Z (s)s))) (7)
n~m n,m

(Y ~ (s)) =(ZC (s) (8)

(2cnm (s) characteristic-impedance matrix

(~ (s)) Echaracteristic-admittance matrix
cn,m

Substituting q = +1 and q =-1 in Equation 6, the following relations can

be obtained:

( zs)+= (Vn(z~s)) + (2nm() (in~z's)) (9)

vn(z~s))- (Vn(z,s)) - (Zc~ (s)) - (In(zs)) (10)

(V(~s) =(V~ s) ) + (Z () fs zs) (11)

n + n cn n

n - n cn,m n

On (z,s))+E forward traveling combined voltage vector or wave

S(z,s)) -Ebackward traveling combined voltage vector or
n wave

10



From Equations 9 and 10, voltage and current vectors can be reconstructed in

terms of forward and backward waves, and given by the following relations:

Vn(zs)) = 2[(n(ZS))+ + (Vn(Zs)) ] (13)

(In(z,s)) = l c (s))- (Vn(zs))+ - (Vn(Zs))_j (14)2 ,m

From the above definitions can be obtained two sets of waves propagating

in opposite directions along z. For all modes, there are

exp [(cn(s))z1 + propagating
P[ n,ms)Z

exp (cn,m(s))Z] - propagating

Equation 3 can be integrated to obtain a solution for the combined voltage

vectors to give

(Vn(zS))q = exp -q(~  (s))[z - Zo] (n(Zo ,s))qn~z~s))q e Cn,m 0m

+rz 
()

+ exp -q( (s))[z- z'] . (Vn (z's)) dz' (15)
z0  Cn,m q

For a + wave (i.e., a wave propagating in the +z direction), assume

that (Vn(O's))+ is specified, then Equation 15 gives

(V n(z,s))+ exp1 -(C (s))z (Vn(O,s))+c,m

+ [ exp -('c (s))[z - z11 (V s) (z's))dz' (16)

)o c n,m n

11
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Similarly for a - wave with (Vn(L,s)) assumed specified, we have

( , zs)--=exo(.s)[z-L-* L )

nn
p '%

z  "cn,m n
i+ expl ~ (s))[z- z']. (V s), (z',s)) dz' (17)

These results illustrate that the + wave depends only on the left boundary

condition and the - wave depends only on the right boundary condition in a

very compact way.

2. TERMINATION CONDITION OF A SINGLE SECTION OF THE LINE (TUBE)

A transmission line is usually terminated at the two ends z = 0 and

z = L. The termination could be a lumped impedance, a distributed network,

open circuit or short circuit. If sources are included, these conditions can

be represented by a generalized Thgvenin equivalent network or a generalized

Norton equivalent network.

Passive terminations can be specified as an impedance matrix

(ZT (z,s)) or an admittance matrix ( Tn (z,s)), where z = 0 or L. The
n ,m n,m

terminating conditions can be specified by scattering matrices ( n,m(z,s)),

where z = 0 or L. Consider at z = L (see Fig. 2); let the incoming waves be

designated by a superscript - and the outgoing waves by a +. The scattering

matrix is defined by

+(s)) = (Sm(ZS)) .( i )(s)) (18)

For the case illustrated in Figure 2, observe that, if this termination

is taken as z = L, then

12,,...-."-
.. . . . . .. . . . . .... . . . .. . . . . .. . . . . .. . . . . .

t..Aaij 

,

V . ,, . V . . . . . - - . - p . - . . -



n

Figure 2. Incoming and outgoing wave at a junction.

4,n (s)) =(Vn(L,s ))_

(19)

n (s)) On~ L~

And if the termination is taken as z =0, then

1i+(s)) ( '))n n
(20)

(k-(s)) =(Vn(0,s))

Equation 18 for z =0 and z =L can then be rewritten as

(N (L,s)) = S (L,s)) * V(L,s)) (1
n - n,m n +(1

(Vn (Oj,))+ - n,m(O'S)) - O(0,s)) - (22)

which in this terminating case is the same as the definition of a reflection

matrix, and these are given by the following relations:

[ 13
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(n=s)) [2TLOs) + (2 (s) ( 1s)) (s)) (23)

n ,m ,m ,m Cn,

nTn,m n,m n,m Cn,m

The scattering matrices in Equations 23 and 24 can also be represented in

terms of the characteristic-admittance matrix and the load-admittance matrix

as

/S = nm(s)) + (YTnm(Ls)) * (cnmS - ,m(L s))

(25)
(Sc (OTR ]-s)) ( O ))

(Sn,m = ()) + (Tn )) L(c (s)) - T s))I~c,ms) n,mOS) P n ,m n,m I(26)

Having defined the general transmission-line equations and termination

conditions for a uniform multiconductor transmission line, now consider multi-

tube multiconductor transmission-line networks. Before deriving the BLT

equation, the scattering supermatrix for a general network will be discussed.

3. SCATTERING SUPERMATRIX

The concept of scattering matrices introduced in the previous section

for a terminated tube is extended here for junctions where more than one tube

is connected. Collections and suitable ordering of scattering matrices at all

junctions of the transmission-line network form a scattering supermatrix.

a. Junction scattering supermatrix--Consider the vth junction, J_,

with tube ends denoted by Jv;r with index r denoting the rth tube. Let this

junction be characterized by an impedance matrix

..- . .,4

. , , . . .. _. . . . .- - .. .. ,,,. . -, ,. . ,. .> . .. . ,. ... . . . . . . ...14.



77 K j Y ()1(7

ln,mS : n,m(S) (27)

The junction scattering matrix is defined so that

n(S))v,+ n,m(S))v (Vn(S)),-

where the subscripts + and - refer to the aggregate of respectively outgoing

and incoming waves on the various tubes in the form of combined voltage vectors.

In the supermatrix, formpartition according to waves on the r) tube

ends connected to J as

•' ((vnO)(s)) r ) V (Zn,m(S)r,r,) V (inO)(s))\)

(28)

" - ((Yn,m(S))r,r,) -((Zn (s))r~,

nV ~ n,m r,r'V
where

(V(O)(s))(f(Q)(s))
-,n r~v n r;v

r : 1,2,...,r

are the voltage and current vectors on the rth tube ends at J with current

convention into J

The tube associated with the rth tube end at Jhas characteristic

impedance and admittance matrices which can be put in supermatrix form for J

as

((Z (s)) - tube-end characteristic-impedance
cn,m r supermatrix for J(9• """(29)

((. ( (s))r,) tube-end characteristic-admittance
cn,m r,r v supermatrix for J

15



where
w characteristic-impedance matrix for rth

(Z (s))rr; tube end at J fcr r= r'

Cn,m r,rO V (0 for rr'
n~m

characteristic-admittance matrix for rth
tube end at J forr r'

(S)r,r, ;V
c,m (0 )for r r'

(30)

(Y = (Zc (s)) -t
n,m rrv Cn,m rv

The impedance and admittance supermatrices for the tube ends at a given junction

are block diagonal and may be represented in terms of the direct sum as j
c (S2))r (s))2,2;v0 "- ( c  (S))r r,

n,m r n,m cnm n,m ,r
r

V-T( (Z c  (S))r,r;v
V=i n ,m

(((c ( ) r~ ') - ( (s))l ; ) ( (s))2, ; . ' ( c (s))r r ;

n,m v n,m n,m n,m
r

- ( )cn ) r,r;v (31)V=I n,m

The scattering supermatrix for J is defined by

( ( n S ) ) _- (O(s ) )r(s ) - ( c n S ) r , " ( lO(s ) ) r
n rv,+ n,m r,r mn r

-outgoing wave supervector at J

((Vn(s))r)v,- -((VO)(s))r) + ((Zc (S))r,r') : (( O)(s))
n V n,m V n

incoming wave supervector at J (32)

16



By solving Equations 28 and 32, the junction scattering supermatrix can be

obtained as (Ref 2):

r 1r ) [((2n,m s)r,r') V Cn ~ r ) V+ ((lIn~) r,r']

: ((n,m(s))r,r.) :(Y (S)) r,r) - ((ln,m)r,r')
V n,m

[((n'm)r r') + (( ( nm(s))r ( )) ]
((n,m r,r (( cnm(S)) r,r' )  : ((n,m(S))r r ,

>'::[(n,m r,r,) (( Cnm S)r,r,) V ( n,m(S)r,r,)V]

(33)

b. Scattering supermatrix--The proper ordering of all the junction

scattering matrices into one large matrix forms the system (or network) scat-

tering supermatrix (( n,m(s))uv). This supermatrix is a collection of the

junction scattering matrices, which themselves are collections of individual

tube scattering matrices. The latter are matrices containing reflection and

transmission coefficients of individual wires within the tubes.

The wave-wave matrix (W u v) gives the structure of the scattering

supermatrix since the scattering supermatrix is in general block sparse as

((sn,m(s)) u,v =(( uv for Wu,v =0 (34)

The network elementary scattering matrices are formed as

((S n,m(s))r,r,;v for v 1 v2 v or Wv
(gn m(S))u=vscattering into Wu at J
n,ms)U uv V

(On m  (O u,v for v V or Wv not

scattering into Wu
(35)

17
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The wave-wave matrix is defined as ]
1 forv = v and W scattering into W at J

W

0 for v1 v2 or Wv not scattering into W( u (36)

The scattering supermatrix is N x N in terms of the u,v indices, I.e.,
w w

U,v = 1,2,...,NW (37)

where NW is equal to twice the number of tubes. The elementary scattering

matrices (Sm(s)) are N x Nv, i.e.,

n,m u'v u v

n = 1,2,... ,Nu (8
u (38)

m =1,2,...,N

where

N = number of conductors (not including reference) on the (39)
u tube with uth wave

and likewise for N
V

As a special case, if there are no selftubes (with both ends

connected to the same junction), then

W = 0 for u - 1,2,... ,NW for no selftubes

(40)

n,m(s))u,u = (0 n,m)u, u  for n,m = 1,2,...,N u (square)

4. DEFINITIONS OF SEVERAL IMPORTANT SUPERMATRIX AND SUPERVECTOR QUANTITIES

This section takes the results for the combined voltages on a tube and

separates them into wave variables for the network. The resulting equation

for a general combined voltage wave W is used to relate the combined voltage

waves at both ends of the tube with the sources along the tube. Each term is

18



-.'.-.. generalized to a form appropriate to the transmission-line network, i.e.,

supermatrices and supervectors, by aggregating the results for all W for

>9. u= 1,2,.. .,NW.U

First, identify the two waves on the tube with the two waves of the

transmission-line network, e.g., Wu and Wv.

Then, consider the + wave; call this W and set the coordinate and dimen-

sion variable as

Lu L - length of path for W

zu - z E wave coordinate for W
(41)

~0 <_. zu <s L

-" ""N _-N --number of conductors (less reference) on tube and
u dimension of vectors for W

u

The wave and source conventions are then

(Vn(z ,s))u -((z,s))+ = (Z ,s)) + (Z (s))u • (z ,s))n u n u Cn n u

- combined voltage for W u

. (vS 'uS))u - (Vs)'(zs))+ = (S)'(ZH'S)) + (2 (s))u  (YS) (Zu S))

n,m

" combined voltage source per unit length for W

(Z (S))- (Y (S) characteristic-impedance matrix for

n,m n,m

S ( s ) ) u  (Cn,ms)) - propagation matrix for Wu (42)

The combined voltage vector for the wave W is given byu

1.9
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('n(Zu ,S)) : exp -( (s)) zu " (Os))

n,m

z z
+ exp i-( (S))u[zu - zu]" (V(s)' (z us))dz u

o n,m

(43)

Similarly, the combined voltage vector for the wave W can be defined.v

Equation 43 shows the combined voltage at any zu in terms of the value

(boundary condition) at zu = 0. Setting zu =L introduces the boundary

value there as giving

(V(LuS)) u exp (O(~ (S))L • (VR(O,s))

n u :))Cn,m u n

L

+ fuexp 1-Q0 (s))F -zl* (V(5)'(z' ,s))udz'
0 L u,m n U n

(44)

This evidently relates (V (Os)) which is an outgoing wave from the junctionn u
at zu = 0, to (V (L ,s)) which is an incoming wave to the junction at zu 

= L
n uu 

u •

As a matter of convention, let all the sources be considered as being

present in the tubes instead of at the junction. If a junction has an equiva-

lent circuit containing sources, then the sources can be moved just across the

terminals into the tube, a movement of zero distance.

a. Propagation characteristics supermatrix--Considering the various

terms in Equation 44, first aggregate all the propagation terms not associated

with the sources into a block diagonal propagation supermatrix as

20



n,m u'v

exp (s)) K~ L (Y (s)) L 2  (B e p (s))N L
n,m Cn,m ep n,m W

- exp (s))~ L 1(45)
u=1 I m u ul

propagation supermatrix

*where the elementary matrices (blocks) are given by

$exp ~-~ (s)) L for u =v

(~m(s)) -
n=

(0 for u v
n ,m

b. Source supervector and combined voltage supervector-From Equation

44 define a source vector for Wuin traveling from.zu = 0 to =u L as

LU

n u Jo I Cn,m u -

*The source supervector is then

* (((s)(s)) )= f exp{f-(' (s))u[Lu J (V, '(zu,s))dun uo 0n,m u u uuun

(48)

* For completeness, one has the aggregate of combined voltage vectors in Equation

* 43 as

((V (O's)) )combined voltage supervector of outgoing waves
n u at the junctions(4

(0~ (L ,s)) ) combined voltage supervector of incoming waves
n u u at junctions

12



5. BLT EQUATION

Combining the results of the previous derivations we can write the BLT

equation for the description of the transmission-line network. In Reference 2

the BLT equation was derived for the combined voltage waves leaving the junc-

tions. Here, the BLT equation will be derived for four variables, namely,

combined voltage waves leaving the junctions,combined voltage waves entering

the junctions, the total voltage vectors at the junctions, and the total

current vectors at the junctions. Begin with the scattering supermatrix

which relates the incoming waves to the outgoing waves as

(Vn(O,s))u = ((Sn,m(s))uv) : ((Vn(LuS)u) (50)

Next, relate the incoming waves at the output ends of the tubes (zu  Luu
to the same waves at the input end of the same tubes (zu = 0), albeit at differ-

ent junctions in general. Equation 44 in supermatrix form is

-'q. ((Vn(LuS))u =W((nms))uv ((Vn(O's)) u  + ((v(S)(s)) u  (51)

n u u n,m u'vn un u

Combining Equations 50 and 51 gives

b ~~((Vn(OS))u ((s~ ))) W ((nms))uv• (0(OS))u
n u nm U nm U n u

+ (s ))u,v (((S)(s)) (52)

That is rearranged by use of the supermatrix identity as

[((ln,m)u,v) - ((n,m(S))uv) : ((Tn,m(s))uv)] ((Vn(Os))u )

= ((Sn i(s))u,v) : ((v s)(s)) (53)

22
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SThis can be rearranged to obtain

((Vn( •O)) ) 1((lnm)uV- ((§n,m(s))SUv)u ((nm(s)uuv)51

(54)

This is one form of the BLT equation, with unknowns taken as the combined voltage

waves leaving the junctions. Similarly, the BLT equation can be obtained with

unknowns taken as the combined voltage waves entering the junctions.

Rearranging Equation 51 gives

((Vn(O's) )  W ((nms))uv-: (LkuS))u W ((nms))uv1: ((v S)(s)) u

n U n,m u'v n u un,m u'v n

(55)

Combining Equations 50 and 54 gives

((n,m(S))u,v ) - 1  ((Sn,m(S))U,V)] :((Vn(Lu,S)) u )

W ((n s)) 1: ((v(s)(s)) u ) (56)
n,m u'v n u

Rearranging Equation 56 gives

((Vn(Lu u = [((In,m)uv) - ((nmSu,v) " ((Sn,m(s))u,v)] n u

(57)

This is another form of the BLT equation with the unknown taken as the combined

voltage waves entering the junctions. From Equations 54 and 57, the BLT equa-

tion can be derived in terms of the total voltage and total current supervectors.

Note the order of multiplication of scattering and propagation supermatrices in

Equations 54 and 57. Rearrange Equation 54 so that the order of multiplication
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of matrices is the same as that in Equation 57. Equation 54 can be rearranged

to give

((Vn(O,S))u : ((Sn,m(s))uv) " ((In,m)uv) n - nm(s))U,v) n,m(S))uv)]
iI : S)(s))u (58)

From Equation 13 and 14, the supervectors for voltages and currents at the

junction can be written in terms of the combined voltage waves leaving and

entering junctions as

S((V S)) = ((n(OS))u) + ((Pn,m) u,v) n (V(Lu S))u (59)

n-. n,m

(60)

eVnO)(s) and 1n)(s) are voltage and current on the nth conductor in thenhen

tube containing the uth wave at the junction from which the uth wave leaves.

In Equations 59 and 60, a permutation supermatrix ((Pn)u) has beenn,m u,v
introduced to sum the appropriate outgoing and incoming waves at the junctions.

The permutation supermatrix blocks have the following properties:

(( ) if Wu and Wv are on the same tube and u v (noting

(P M) uv (n,m u,v that this is a square matrix)n,m u'v (On,m0u,v if Wu and Wv are not on the same tube or u v

u,v = 1,2,...,NW

and
n =

m = 1,2,... (61)

Iv
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Cnly one block matrix (P ) is equal to (1 on any --)w or coumn with
n,m u'v n,m

respect to indices u or v. Thus ((P ) )is an orthogonal supermatrix.n,m u,v

Substituting Equations 57 and 58 into Equations 59 and 60 we obtain

n( u)~) 2 [ 1((in,m(s))U,V) + ((P mu,vl1

: ~ ~ ~ () Lnrnuv - uv :(nm(s)) uv] :((Vs)~(s))u
(62)

: I(('n,m)u,v) - Tnm s) :V ((in r(s)) U,V] n (~~()
(63)

Equations 61 and 62 are two forms of the BLT equation in terms of the volt-

age and current supervectors at the junctions.
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III. BOUNDS FOR SIGNALS ON A MULTICONDUCTOR CABLE NETWORK

Having derived the BLT equations for general multiconductor-line networks,

one can now establish upper and lower bounds on combined voltages, voltages,

and currents, using the norm concept discussed in Appendix A. The BLT equa-

tions give voltages, currents, and combined voltages at the junctions. From

these, voltages and currents can be found essentially everywhere, including at

*the junction terminals and at arbitrary positions on the tubes. However, only

the junctions will be used to establish bounds.

1. BOUNDS ON COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Taking the norm of both sides of Equation 58 gives

11((Vn(OS))u)11 ll((Sn,m(S))u,v) : ((In,m)u,v)

- ( s)u,v) : (s )) :((Vs) (s))u)II (64)

Using Equation A6 in Equation 64 gives

. ll((Vn(OS))u)11 1 I(Sn,m(S))u'v)11l l[((In,m)u, v )

Su,v):((n,m(s)) u,vT- 1l:II((v S)(s)) u1 (65)

Rearranging Equation 58 gives

n,m u,v n,m u,v n,m u,v n,m u,v

(( (O's)) ) ((s)(s))u ) (66)

n u n u

Taking the norm of both sides of Equation 66 and using Equation A6, one

obtains

26
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II[((In,m)u' v)  - (n,m(S))u, v)  :((Sn,m(S))u,v)] ((Sn,m(S))u, v)

I((V (Os)) )II > II((V n (s)) )I

or

Ol(n(OS))) V I

,,V(s)( ) I
> n u

ll[((ln,m)u, v)  - ( n,m(S))u v) : ((Sn,m(S))U v)] : ((nu,v')-11

(67)
..

Equations 65 and 67 give upper and lower bounds on the norm of the combined

voltage supervector for all waves leaving junctions, in terms of the norms of

other quantities, such as combined voltage source waves, scattering supermatrix,

and propagation supermatrix.

Similarly, one can obtain upper and lower bounds on the norm of

combined voltage supervector for waves entering junctions. Taking the norm of

both sides of Equation 57 and using Equation A6, one gets

II((Vn(Lu))u)ll _< ll[((ln,m)u, v )  - ((n,m(S))u'v) "((-Sn,m(S))u'v)]- 11

II((v S)(s))u )II (68)

and

II((Vn(Lu s))u)II > (69)ll[((In,m)u, v)  - (n,m(S))u'v) "((Sn,m(S))u,v)]ll

Similarly, from Equations 62 and 63, the upper and lower bounds on the

norms of voltage and current supervectors are given by
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.--,°(! ll( ) (S))ul - 1 [ ((nms))uv + U(Pn~~~)

.° l='

n,m u,v n,m u'v n,m uv)n lu
(70)

n m (Sllu,vl ((n,m u,v n,m u,v

*lI[[((In,m) u,v) -((?n,m(S))u~v) : ((-n~(S)u H)] IK l(( S(sD)u l

(71)

l(O)sul]_l((nm uU n,m u,uv n,m ()uv

:[((Sn,m(S))u,v)+((Pn,m)u,v) ]-1llI (72)

ll(g°)S )u ll >_ ll( gs)(s )ul/ (n'm) u'v ) -( nmr(s) )U,v :(§.n ,m(S))u, v)

:[ (s~ ))u )-((Pn ) 1v) - 1 : (RZ (s))u vl1
n ,m (73)

Equations 70 and 71 give upper bounds on the voltages and currents, respec-

tively, and Equations 72 and 73 give lower bounds on voltages and currents,

respectively.

Before evaluating these upper and lower bounds, we shall illustrate

what these bounds mean. The upper and lower bounds defined in Equations 65,

67, and 68 through 73 are upper and lower bounds on the norm of vectors.

In Appendix A, 1, 2, and - norms for vectors and matrices are defined. The

above equations are valid for any norm as long as they are consistent on both
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. sides of the equations. For the purpose of bounding signal levels, norm for

vectors is most appropriate, for it gives the magnitude of the largest element

of a vector. For a voltage or current vector at a junction or at any point

along the line, the norm gives the magnitude of the maximum conductor voltage

or current (pin voltage or current at terminations). Thus an upper and lower

bound on the norm of a vector gives, respectively, an upper and lower bound on

-- the magnitude of the largest element of the vector. The lower bound should not

be confused with the magnitude of the smallest element of the vector.

Since the 2 norm of a matrix is obtained from the knowledge of its

eigenvalues, it can be evaluated from the characteristic properties of the

1 matrix and will therefore be used for matrices in the evaluation of upper

and lower bounds. Using and 2 norms and Equations A64 and A94 through A99,

upper and lower bounds can be written for combined voltages, voltages, and

currents as follows.

Using 2 norms on both sides of Equation 65 and substituting Equation

A63, one gets

:..~~ ~ l(V(S)u~lo : l n,m(S)u'v ) l 2

*II[((ln,m) m(VS l uuv Iv] -1 2 ll((vnS)(s))u)I 2

(74)

Substituting Equation A65 into Equation 74 gives

- I((n(O'S))u)llo -  /Ns 1I((Sn,m(S))u,v) H 2
U ( W s))(s) ((S) (s)))I

i• II((ln,m) u,v - n,m u,v) • (ngn,m(s) u,v)]'l12 n((n  u
(75)

0. Where N is the dimension (numbers of components) of the source supervector.
5
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A lower bound on the combined voltages for all waves leaving

junctions is obtained by using norms on both sides of Equation 67 as

n'"" n(O u) -  n ( sl ) 11/ [11 ((ln,m)u,vl-( (n,m(S) )u,v) (( n,m(S) )u,vl

:((Sn,m(s) )uv) 11L1 (76)

Substituting Equations A6 and A98 into Equation 76 gives

n nIVn0,s))u)o > (fn,m(S) )u,v) ( n,m( s ) )u, v )  2

z}:i i  • I( (n~m s ) )~v)'ll2(77)

where Ns is the size of the supermatrices in the denominator.

An upper bound on the combined voltages for all waves entering

junctions is obtained from Equation 68 using Equation A63 as

If((Vn(Lu'S)))II - ((Fn,m(S))uv ((Sn,m(S))u,v)]-II 2

2((s)(s) (78)

•ubstituting Equation A65 into Equation 78 gives

I[((Vn(Lu S))u)iK <V'Ws ll[((ln,m)u,v) ((n,m(S))u,v) : ((Sn,m(S))uv)]- 2

e:. . •II( v s (s))u)lo (79)

Similarly, a lower bound on the combined voltages waves for all waves entering

junctions obtained from Equation 69 using Equation A98 as

30-i 
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(Vn( II('nm U)v n u ):(nms)uvT2

(80)

Similarly, an upper and lower bound on the voltages and currents-*at the junc-

tions is obtained from Equations 70 through 73 using Equations A6, A63, A65

and A98 as

Ii'n ~iu/Io2 IL'n,m '''uv n,m' u,V JI 2

2 VI~sILllA(n,m(5))u,vJ + (n,m u,v 112

(81)

('0) 1 -(s) (s

31



<(( )()))11  (s))uv 2 l[((sms)) - (P ,

Cn,2im m u,v 2

• ll[((lnpmu,v) - (( n,m(s))u,v) : ((Snm(s))u, v)]- 112(( S)(s))u)

1 NS c ( ) I (( 1 ()P2 Js I((Ycn,m( u'5 uv 211[(Sn,m(S)u,v) - n,m)u,v)II2

"l1[((I '121(n,m)u,v ) -((Tnmn(S))u,v
) :((§n,m(S))u,v)]-Z J( V"S (s))u)

(83)
i I((O(s))uQ 1 lj(S)(s))ul/[(lmuv_(nmS)uv((nmSuv]

(0) 2 11(CVn 5m))uv-(Pn,mu,v] -  :nm (( ,(S))uv n,m)

/n I [((In m) u,v (rn,m(S)u,v) :((g n,m~s)  ] 2
4 J[((Sn'm(S))u'v)'((Pn'm)u'v)1-Ir (a~cn (S))u'v)112]

n ,m

(84)

So far, relations for upper and lower bounds for combined voltages,

voltages, and currents have been derived in terms of norms of other parameters,

such as the propagation and scattering supermatrices, the characteristic impe-

dance or admittance supermatrix, and the source supervector. Thus, to establish

upper and lower bounds on combined voltages, voltages, and currents, one has to

first establish bounds on the parameters. To establish bounds on the parameters

and the sources for a general multiconductor cable network is very difficult.

Furthermore, if such bounds could be established on parameters, the resulting

bounds on the voltages and currents may be unrealistic. To get reasonable

bounds, special canonical configurations of a multiconductor cable network

are considered in Sections IV and V.
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The simplest of these configurations is a uniform section of a multi-

conductor transmission line in a homogeneous medium terminated at both ends

and excited by an external field or voltages and currents at terminations.

To make the transmission line configuration more complex, a branch can be

added to a uniform section of the line. The branched line will illustrate the

procedure for calculation of bounds for cable networks with junctions. These

two configurations will be considered in Sections IV and V.

2. BOUNDS IN TERMS OF BULK CURRENT

In evaluating the EMP vulnerability of a system, the bounds which are of

most interest are the bounds on pin currents in terms of the bulk current.

The bulk current on a multiconductor transmission line is defined as the

algebraic sum of all the wire currents at a given cross section. This concept

of pin current bounding in terms of the bulk current has tremendous implica-

tions for aicraft testing. If such a bound can be established, then one need

measure only bulk currents on cables in an aircraft, thereby reducing the

number of measurements by orders of magnitude. This section addresses the

problem.

Since the 1 norm of a vector is defined as the sum of the magnitudes of

its components, and the bulk current is the algebraic sum of the wire current

in a cable, then for current vector on a multiconductor line at a termination

one has

[1(0) (s))r;vl'1 ?P(O)(S)r;v 1 (85)

where (I(O)(s))r is the current vector for the rth tube at the vth junction,

and 1(0 )(s) is the bulk current on the rth tube at the vth junction and isB r;v Nu 0

defined as ( )O)(s)r;v - (S)r;v

n=1
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Writing Equation 85 for currents at all the junctions gives

N
'11.,- > I O)(s) -I (86)

n u Ed--r 1 B

where the right-hand side is the sum of all the bulk currents in all the tubes

• at all the junctions.

Now express the norm of the current supervector in

terms of the total bulk current. This can be further decomposed in terms of

bulk currents on tubes at various junctions for specific problems. Substitut-

ing Equation A63 into Equation 84 gives

(0) sI(n s s u) IL

i/s i (n o ,v)- (fnm s) )U, v)" (Sn, m(s))u v)] 112

n,m u,v n,m u,v n ,mn,m

(87)

and taking 1 norm of both sides of Equation 63, and then substituting Equa-

tions A6 and A94 into the result gives

n ( O()ull< 2 [l (Y n ,m s ) u , v) l2 [ ( ( §n , m( s ) ) u , v ) -((Pn'm)u'v)]112

• I( n,mL,v)-((?n,mL,v) :((%n,m(S) L,v) ]12 I(vSs)u) I11

(88)

In Equations 87 and 88, 2 norms of matrices are used, since these can be

computed from energy conservation. Dividing Equation 84 by Equation 88

and then substituting Equation 86 in the result, one obtains

34



V

I(U0 (S))s) IN

n I(~() u S1/[NI(ECC1n,m) u,v) - ~ s u, v) :(m( s)u ) )1I2
u~ ' ~ ~ ,v n'V m 112

* IIE((s ~)) )~ m ~~'' (Zn~) 1

c hI('(s ) 11~'2 111( n,m(s) )u,v) ((nmuv '2

IM W~v ((~n s))uv ((nms)) ,)]-'112 1CC(n(s))uVlli]

(89)

Thus Equation 89 gives a lower bound on the ratio of the maximum pin current

to the bulk current.

Similarly, dividing Equation 83 by Equation 87 gives

*v~l() IIC'~uv) C st :~~-

n~m~v

(90a)

K Also, from Equation A64

IMCP nCs)) V
fl (90b)
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In Equation 90 the upper bound is independent of sources. In Equations 89

and 90, the norms of matrices and their inverses occur in pairs. From Equa-

tion A56, the product of the norm of a matrix and the norm of its inverse is

greater than or equal to 1.

From physical principles and Equation A65 the lower bound on the ratio

of the maximum pin current to the bulk current is 1/Ns. Thus, with the result

in Equation A56 in mind, the lower bound in Equation 89 is not useful since

it gives a lower bound less than 1/Ns.

Equation 90 gives an upper bound on the ratio of the maximum pin

current to the sum of the magnitudes of all the pin currents. Since we can-

not substitute the 1 norm in the denominator with the bulk current, this

bound is not very useful either. It is obvious from the above discussion

that an upper bound on the ratio of the maximum pin current to the bulk

current cannot be obtained analytically. However, it is seen easily that,

in general, pin current is not bounded with respect to bulk current, since

the bulk current in a cable can bezero, while the individual pin currents are

nonzero; for example, a two-wire cable excited in the differential mode has

nonzero pin current and zero bulk current.
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IV. BOUNDS FOR A UNIFORM SECTION OF A MULTICONDUCTOR TRANSMISSION LINE

This section covers a special case of a general multiconductor cable

network, a uniform section of a multiconductor transmission line termi-

nated at both ends. Two types of excitations will be considered. In the

first type of excitation, the line is excited by an incident external

field, and in the second type, the line is excited by voltage or current

sources at the terminations.

Consider a multiconductor transmission line formed by N conductors plus

a reference conductor or ground as shown in Figure 3. The line is assumed to

be uniform along its length (z coordinate), but with arbitrary cross section.

In general, the dielectric surrounding the line is inhomogeneous (e.g., cable

made of insulated conductors having different geometries and dielectric

materials).

The wave t'aveling in +z direction is denoted by wave W or simply

wave1, andthewave traveling in -z direction as W or wave 2, as shown in

Figure 3. Then the combined voltage vectors for multiconductor transmission-

line in Figure 3 are given by
0 (VnO'S))l

((Vn Os))u) = (91)

(Vn(Os))2

(Vn (L,s)),
((Vn (L u ' = 1 1 (92)

where (Vn(Os)) 1 and (V(O,s))2 are the waves leaving junctions at z = 0 and

z = L, respectively, and (V (L,s)) and (Vn(Ls)) are the waves entering
n 1 n 2

junctions at z = L and z = 0, respectively.
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(ZT (O's)) ______________ zT(,
n,m n,m

Ground

z=O z=L

Figure 3. A multiconductor transmission line over a ground plane,
terminated at both ends.

The waves leaving and entering junctions are related through scattering

4 matrices as

((O ,s)) (Lg s) n 2 93
n 1(n )) 1,2 n~ (L(s))

nV ( = ~ ()) (94)

wee n,m s)1,2 and (S Cs))2, are scattering matrices of junctions at

z = 0 and z = L, respectively. The subscripts 1,2 and 2,1 indicate that the

2 waves is scattered into the 1 wave and the 1 wave is scattered into the 2

wave, respectively. Combining Equations 93 and 94 and writing the scattering

matrices in supermatrix form gives

4- (VnOs) nmI ( n,m s)1,2 On 'L ) 1 (5

(V ,)~ , (S (s)) ( ( (L s))
\ (O~s))2) /\ ~ m 2, (n,m) 2,2 !( nLs) 2 )
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((Vn(O,s))U) =(( n Cs)) ') :((Vn(Ls))U) (96)

where

((n,ms)uv (n,m) 2,1 n,m s ) (97)
(S~(s))2, (0 )

scattering supermatrix

u = 1,2

v = 1,2

n = mn=1,,.

(s)) and (s))2 are the reflection coefficient matrices at z 0

and z =L, respectively, and are given by Equations 23 through 26.

From Equation 43, we can write the relation between the 1 wave at

z L in terms of the Ilwave atz =O0as

(V (L,s))1  exp {-~n(s))L} *( (O's))1

+ (1exp { cm(s))[L -zI]} *VS'z,) z

-. . Jo(98)

Note that Iz for ul

u - for u =2

*Similarly, the 2 wave at z =L can be expressed in terms of the 2 wave at

z 0
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(V~ (L s) = exp {( ()L ~lOs)

L
-f exp {-&4 (s))z"} *(V(S '(z",S,))2dz" (99)
ao n,m2

where z"t  L -z'. Combining Equations 98 and 99 gives

((Ls)) \ (exp -~ ,(s))LI (0n)C I (n0s i

f-(y (s)V - '] *(Vs)),))

exp Cnm l

(ex n{(L;;cnm2(s))zm)}e * (-(S)c (Zis)) dz /V~~s

n u nm U, n u n u

fo ex = n~m (s)[ (102) (n zs)

Cr ())~ = ~(~))=exp{-7 (s))L} (103
nJm nc n,m n ,m'("I))

(100



= exp (Iy (sDC:- z']'f (V~~(s) ',s)) ldz) 14

ex {( c (n),, (n))u( S))2d

0 n ,m

- ~exp (s)) ())z"}s)'(,z))- ()(s))

0c n,m n c n,m n

(105)

where (n ,s)) is now taken pos-';tive in W1 (or +z) direction.

1. NORM OF THE SCATTERING SUPERMATRIX

The scattering supermatrix for a uniform section of a multiconductor

transmission line is given by Equation 97, and has its diagonal block matrices

as null matrices and off-diagonal block matrices as the reflection coefficient

matrices at z =0 and z =L. From Equation 97, one can write
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t

n,m 21 n,m 2, m

(0 (s) (t ''21)()

-\ m (nm 1 ,2 (n,m() 1,2

- [cnr(s))2i (s)) ,11(§n,m(s))l ,2 nm(s)),2

(106)

The supermatrix in Equation 106 is block diagonal and, therefore, its eigen-

values are the eigenvalues of its block matrices. Equations 106 and A73 give

~~ Cs-*(n ~ 21? 1/2

(smax II(S(s)s))
u,2 n,m ,2 (107),

u=2,v1l

Thus the 2 norm of the scattering supermatrix of a uniform section of a multi-

conductor line is the larger of the 2 norms of the scattering matrices at the

terminations.

For passive terminations, an upper bound can be established on the 2 norm

of the scattering supermatrix. For passive terminations, the 2 norms of the

scattering matrices (reflection coefficient matrices) (g (s)) and
n,m 1,2

0 (s)) satisfy the inequality

IISn(5)I2 ~.1for s j w (108)

A.' The proof of Equation 108 is illustrated in Appendix B.
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Similarly, one can establish a lower bound on the norm of the inverse of

the scattering supermatrix for passive terminations.

From Equation 97, one can write the inverse of the scattering supermatrix

as

nm
.. ())as' (0n ) (Sn m(S))1 "I /

(s) F(09)
~( ( nms))-I

n 2,1 (On,m)

Since (Snm))1,2 and (n,m(s))2,1 are square matrices for a uniform section

of a line. Then from Equation 109

) -InM ((n,m(S))uv)-

(Suv (Sn,m()) 2 I nm

S n,m' (n,ms)) 1,2 n,m 1, 2

. -It 1-nmt) (s n,m(S))l,2]'=- [(Sn,m,(S))2,1 "§~~)21( [(n s),2 -I 12

(110)

From Equations 110 and A73, one has

'"t 1/2

,1
o( ( n m ( S ) ) u v ) ' li1 2 ' m a x n) -2, I ( S n , m ( S ) )-

(Sn,m s 12 " ,2

max II(s~ ))u 1I
u~l,v2 n , V 2

u=2,v=l

The 2 norm of the inverse of the scattering supermatrix is greater than or

equal to one for s jw (see Appendix B).
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2. NORM OF THE PROPAGATION SUPERMATRIX

The propagation supermatrix for a uniform section of a multiconductor

transmission line in Equation 102 is block diagonal, with block matrices

equal to the propagation matrix of the line given in Equation 103. From

Equation A73, one can write the 2 norm of the scattering supermatrix as

w = Hexp{-( Cn (s))L} 112  (112);

cn,m

Thus the 2 norm of the propagation supermatrix is equal to the 2 norm of the

propagation matrix (nm(s)) of the line.
n ,m

The propagation matrix (fn(s)) is a complex, nonsynmetric matrix in
n ,m

general. The calculation of the eigenvalues of the propagation matrix requires

knowledge of the propagation modes, eigenvalues, and eigenvectors of the char-

acteristic propagation matrix ( Cs)). Since it is difficult to findn,m
eigenvectors of the propagation matrix without the complete knowledge of the

matrix itself, for the purpose of establishing bounds the investigation will

be limited to a homogeneous medium case. For a multiconductor transmission

line surrounded by a homogeneous medium, the characteristic propagation matrix

is diagonal with equal elements since all the modes propagate with the same

speed. The diagonal elements of the characteristic propagation matrix for a

homogeneous passive case are given by

Cn = (s) + j(s) for s = iw (113)
a(s) > 0

where ct and are the attenuation and phase constants.
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From Equation 113, diagonal terms of the matrix (fn~ (s)) are given by

n~ ,mn

=exp{-&(s)L} exp{-j (s)L} for s = w (114)

From Equation 114, the 2 norm of the matrix (F (s)) can be written asn ,m

(Fnm ))jj 2  = iI(n,m(s))II = Iexp{-a(s)L} exp{-j (s)L}I

= exp{-a(s)L} for s = jw (115)

since the magnitude of the second exponential term is equal to one.

From Equation 115 one can conclude that

II(n 12.~ 1for s j w (116)

and hence

IKrn,m(s)) u'v) 12 .~1 for s j w (117)

3. NORM OF THE SOURCE SUPERVECTOR

* The source supervector is given by Equation 105 and, using Equation A62,

'K. its norm can be expressed as

i ((()) ~) II

1fexp{-(%c (s)) z']} [(V~s)'(z',s)) + (2cn(s)) *(i~s)'(z',s))]dz'I

n c n
o n,m n,m

(118)
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Using Equations A91 and A6, the norm of the vectors in Equation 118 can be

expressed as

ex{( I ex{ m(s))[L z' l [II~s)',s) jIz (s) I (Z m(z))III1z'll)I~z

0 cn,m nc,m

< j.L exp{-( c (s))[Lz l 11 [( (z 's)) + (2 (s)) (~)Z",S))l0d

o n,m n ,m

(120)

j (exp{-( V(s),L (Z () 1 (121)z~

IeP{(Y m(S))ZI c~ 1 (122) ()) (I

n 0 n,m

(123)

Fo ahoogneusmdimfrm quton 11 te or f heprpaa6o

matrx isbouned y (fr s j1



Note that the two integrals are equal so that only one is needed, and the norms

can be expressed in terms of the norm of this one as

2 [1  I(V~s) (z 's))11 1 + 11I(2c (s))f 1  iIa(Ys)'Z sI dzjn U [f nn ,mn

(124a)

(124b)

1.~ S' [10s' 'M 0 + 11(2c m(s))JI. ! (s'('s j.1

(124c),
If the per-unit-length voltage and current source vectors along the line can

be expressed using delta functions as

(V(zs)) = (V~s)()) 6(Z'-C) = 'S.'~s) (f!.S)(s)X..6(z'- .
a=1 l

where a =1,2,. **'0ma then Equations 124a through c can be written as

max

max

(124d)

max
n= n,m n(r124f

Equaions124athrogh 14f epres thenorm of(he2surc
suerecorintrm o te omsofth pr-nt-enthvotgean crrn

4ma

's

(s)u)1O 1(Vs)(s) 1. 1(2 (s i"W~) s)47".
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source vectors on the line and the norms of the characteristic-impedance matrix

of the line. The expressions for the norms of the source supervector can be

simplified for the following three special cases.

a. Sources are delta functions; that is, the sources exist only at a

point along the line (localized sources). In this case the 1, 2, and norms

of the source supervector in Equation 124 reduce to

11( (s (S) ) 11 5.2 I(V s) (s) JI + J(2 (s))ll I, 11(1 s )  (s))llI  (125a)

1 + cn,m n

0is) (1s5bn((Vs())u)l 2  11 vI(V~s) (s)) 112 + 4 -1 (Zcn (s))112 1l('n s ) (s))112 (12gb)
n,m

11(( s) (s))u Iloo 11(( s )  (s))I". +  1l(2c (s))ll I( s )  (s))ll, (125c)

n,m

b. Sources are uniform along the line. In this case the 1, 2, and

norms of the source supervector in Equation 124 reduce to

l(( s)(s))u) I1 2L (V s)±'(s)) 1l + 2L l(2c (s))JI, jj(I S)'(s))lll (126a)
n,mn

(v su) 12 (VIL v)(s))2) 112 'L (zc (s))112 l(IS)'(s))l2n,m
(126b)

I((vS)(s)) u)ll L 1l(V(S) (s))f1" + L ll(2c (s))II I(1(s)'(s))IL, (126c)n c n,mn

c. Sources are rather uniform; that is, the variation of per-unit-

length sources along the line is small. In this case, it is appropriate to

use the maximum so that the 1, 2, and norms of the source supervector

can be written as

6
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l(0(n s ) ( s ) ) u ) I -< 2L[ ll( s) '(zs)) II + II(ZC (s))Ill jj(I ( s) ) 11 1]max
(127a)

II(( S)(s))) 2 / L2 L 1 l(V s)'- (z's))12 + 11(2c (s))112 lI('isl'(s))II2]max
n,m (127b)

ll((V )(s))u lloo _L[ l(V s) '(z,s))lo + 11 (2 n (s))llo ll( s)'(s))lom ax
n n ,max

(127c)

4. NORM OF THE MATRIX [((n,m)u,v) - ((nm(s))u v) " ((Sn,m(s))uv)]"

From Equations 108 and 117, the 2 norms of the scattering and propaga-

tion matrices are less than or equal to one, and, hence, for s = jw

l((in,m S Sn,m S uv) 2< I ( n,m(S))u,v) 11211 ((Sn,m(S) )u,v) 112

(128)

Then from Equation A48one can write

ll[((In,m)u,v) - n,m(S))uv : ((Sn,m(S))u,v)] 1i12

1 (129)
1 - ((Fn,m(S))u,v)112 I((Sn,m(s))u,v)112

for s : jw

Note that since the product of the norms in the denominator of Equation 129

is less than or equal to one, this upper bound cannot be used for calculating

upper bound for the norm on the left-hand side of Equation 129, for it gives

an infinitely large bound which is not useful. To get a finite bound

in Equation 129, tighter bounds for the scattering and the propagation

matrices are required. For a homogeneous medium, the norm of the propagation

matrix is given by Equation 115 as

*((:n,m(S) )uv,1,2 =e- t(s)L for s :j (130)
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For a lossless case, Equation 130 reduces to (for s = jw)

lI((sn,mSuv)i2 : 1 (131)

Hence, for a lossless case, from Equation 129, one can write

I[((ivn,m ~ m(S-)u,v) . ((Sn,m(S)) u,v)- 2 _:1 I
I -l ( n,m(S) u,V)II2

for s = jw (132)

The norm of the scattering supermatrix for a uniform section of a multiconduc-

tor transmission line can be calculated from the knowledge of the termination

impedances considered next.

5. NORM OF THE SCATTERING MATRICES AT TERMINATIONS

The scattering or reflection coefficient matrices (Sm(s)) and
n,m 1,2

(Snm(S))2,1 at the terminations of a uniform multiconductor line are given

by Equations 25 and 26 in terms of the characteristic-admittance and

termination-admittance matrices as

( (s)) = [(Y (s)) + (O's))]- [(Y Cs)) T (Os))]
n,m 1,2 c T c - T

n,m n,m n,m n,m (133)

(S (s))21 (Yc (s)) + (YTnm(L,s))] *1 [(Yc (s)) (YT (Ls))]'~ , n,m T ,m c ,m Tn,m

(134)

where (T (O,s)) and (YTn (L,s)) are the termination-admittance matrices at
n,m n,m

z = 0 and z = L, respectively. These are related to the termination-impedance

matrices by the following relations:

(YT (Os)) (OS))-  (135)Tn,m T,m

(Y (L,s)) : (ZT (L,s)) -  (136)
n,m n,m

- . ........... ........



From Equations 133 and 134, using Equation A6, one can write

II( Sn,m(s)) + (YT (O's)
n,m n,m

" [(Yc n,m (s)) -(YT n,m (O's))]II (137)

n,m n,m:1 II(Snm(S))2,111- < I[cnm(s)) + (YTnm('s))]III

* (s)) - (YTn(L,s))]lI (138)"][Yn,m n,m

For a short- or open-circuit termination (all termination impedances are zero

or infinity), the scattering matrices in Equations 133 and 134 are equal to,

respectively, - or + the identity matrix. And since the eigenvalues of the

identity matrix are all equal to one, the norm of the reflection-coefficient

matrices is exactly equal to one for short-circuit or open-circuit termination

and, therefore, these two cases will be excluded and the assumption made that

the termination impedances are finite and nonzero.

An estimation of upper bounds for norms of scattering matrices in Equa-

tions 137 and 138 is quite difficult without a complete knowledge of the

characteristic-admittance and termination-admittance matrices. However, things

can be simplified somewhat ifone assumes that the termination-admittance matrices

are real and diagonal; the real, diagonal matrix implies resistive diagonal

loads, that is, there are no loads between conductors and each conductor is

terminated to ground in a resistive load. This is not a severe assumption

since, in practice, diagonal loads are very common for electronic systems con-

nected by multic,- uctor cables. Further,one assumes that the medium is loss-

less, or the losses are small so that the characteristic-admittance matrix is

real.
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For diagonal resistive loads, one has

(~Tnm0~5) = ~(139)

(;Tn(L~s)) (G Tn(L))

where
GT (0) 0

n,rn if n m

Tn ,m

and for n =m

GT (0) =the conductance between nth and ground conductors at z =0
* n,n

G T n (L) =the conductance between nth and ground conductors at z =L

For a lossless case, the characteristic-admittance matrix is independent

of frequency and can be written as

(j (s)) = ~n~(140)
cn,m m

Substituting Equations 139 and 140 into Equations 137 and 138 gives

1I( n,M)1,2li2 11II(y ) + (G T (0))Y 1112 IIE(yc T ~ (0))]112n,m n,m n,m n,m
(141)

II( n,m) 2,i112  11 I( c n~ + (G T m (L))]- 112 I1[(Yc n - (G T m (L) )111 2

(142)

Note that if the line is terminated in its characteristic admittance, the

scattering matrix is a null matrix and its norm is zero. Since the termination-
admittance matrices are diagonal, their norms are simply equal to the largest

element, i.e.,
0 0I(GT (L)112 =max GT (L (143)

n,n n,n
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Thus the 2 norm of the termination-admittance matrix is equal to the reciproc-'

of the smallest value of the terminating resistor. The characteristic-admittance

matrix is a diagonally dominant, real symmetric matrix (Ref. 14). The

diagonally dominant property is defined as (Ref. 7)

cn m iCnm for all n (144)".c n ,n m ,m

O~m

Since (G )ispositiveanddiagonal, thematrix sum [(fc ) + (G n. m )] is
n,m n,m n,m

also diagonally dominant. Then from Equation A37 we can write

0 1

11[(Yc )+(GT () 2]IIa 1 N
n,m nm mn {Y Cn0n+(GTn nL- 1cnm+(Grnm L'

m~n (145)

An upper bound for the characteristic-admittance matrix can be obtained

using Equation A38 as

I (Vcn )112 Y 17c I
,m n n,n

< N max VY I (146)
n,m n,m

For a homogeneous case, the characteristic-admittance matrix can be

obtained from the per-unit-length inductance matrix using the relation

(Y ) =-7 (Ln)- (147)
cn ,m v n,m

where v is the speed of propagation on the transmission line. The self and

mutual terms of the inductance matrix for a multiconductor line can be esti-

mated approximately, using the following relations (Ref. 10).

.
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Ln, n  .2 kn[4 Hn/dn -H/m

(148)

Ln, m :0.2 kn[B n,m/D n,m] iH/m

The parameters in Equation 148 are defined as

d the diameter of the conductor

H the distance froi a conductor to ground plane

D the distance between two conductors (between centers)

B the distance from the conductor to the image of a second

The relations in Equation 148 are valid if the distances between.conductors

are greater than or equal to 5 times the radius of conductors.

Similarly, using the procedure described above, we can calculate an upper

bound for the inverse of the reflection coefficient matrices. From Equations

133 and 134, for diagonal, resistive loads and a lossless case, one can write

:( s 1 2 = c ) - (GT (0))] - 1 .  + (GnT (M (149)

n,m nm cm n ,m

(s ) nm c (GT (L))] [  ) + (GT (L))] (150)
n~m 2, Tncmn, .,m n,m n,m n,m

Using Equation A6 in Equations 149 and 150, one can write

mo' 1 1 C (c n  (~i(n,m )) 2112 -<I[ ) - (GT (0))] 1 12  I (c ) + (0)))I12

. m.n,m n,m n,m nm

(151)

m 2,1I2 < II ) - (GT  (k))r'l12  I[f ( ) + (GT (0))]II?
• -. ,m n,m n,m n~m-

(152)

The norms in Equations 151 and 152 can be evaluated for diagonal loads using

the relations for the norms of the characteristic-admittance matrix, the load

admittance matrix and the matrix [(Yc ) (GT )]1
n,m n,m
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Having defined norms of the scattering and propagation supermatrices

and the source supervector, onecan now calculate upper and lower bounds for

combined voltage waves, voltages, and currents using the relations derived

in Section III.

6. BOUNDS FOR COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Substituting Equation 129 into 75, one obtains an upper bound for the

combined voltage waves leaving junctions (terminations for a uniform section

of line) as

nT 0, S ,, ,, (153)
1 n -I((nm S ) , v~ 1211(( nm( Su1,v)532

where n (Os)) )(((s)(S))u), (( (S))u) and (-Sm(s))u) are givenn u' n u n,m u'v n,m u'v
by Equations 91, 104, 102, and 97, respectively. Note that N is the

dimension of the source supervector and is equal to 2N, where N is the number

of conductors in the transmission line.

The - norm of the source supervector is given by Equation 124, and the 2

norm of the propagation supermatrix is given by Equation 115. The calculation

of the norm of the scattering supermatrix was discussed in Section IV.5. Note

that, fora lossless case, the 2 norm of the propagation supermatrix is exactly

equal to one (for s = jw), and use of the inequality (Equation 108) in Equa-

tion 153 gives an infinitely large bound for the combined voltage waves leav-

ing the termination, which is not useful. Therefore, the knowledge of a

tighter upper bound on the norm of the scattering supermatrix is essential to

obtain a practical bound, and this can be obtained by using relations discussed

in Section IV.5. A lower bound for the combined voltage waves leaving termina-

tions is given by Equation 77 as
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l((Vn(OnS))u)m) 1

l( s) (s~l) !

V-l((ln,m)u,v) -((n,m(S))u,v) ((S(( nS)) )]( S))u,v) 12

(154)

An upper bound forthe norm of the inverse of the scattering supermatrix can be

obtained from Equations 151 and 152. Note that, in this case, Ns is the

order of the supermatrices in the denominator and is equal to 2N.

Using Equation A6 in 154, we get

l((n(OS))u)

n
-Ns[1 + ll(( n,m(S)Iu,v)1l211(( n,m(sllu,vl112.l((Sn,m(s)u,v) 112

(155)

Substituting Equations 129 and A6 into Equation 79 gives

upper bound for the combined voltage waves arriving at the junctions as

(S)(s))u~l

IlI((Vn(LuS))u)ll " <. (156)
n 1 )I((1121 (u,v (n,m(S) u,v) 12l

where ((Vn(Lus))u is given by Equation 92 and Ns = 2N.

A lower bound for the combined voltage waves arriving at the junctions

is obtained from Equation 80, using Equation A6 as
ml(gS)(s))u)ll=

II(0 (Lu9s)) )11." (157)
( lVs + ll((rn,m(s))u,v)lI211((Sn,m(S))u,v)112]

Similarly, substitution of Equation 129 into Equations 81 and 83 gives

an upper bound for voltages and currents at the junctions as
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<(Vn (s U)1(nmuv)I]I(~())0 18

1- ) N 111(n ~ s))~ ) s

1 Ar [I (( n,m U,)1 I(n,m UV121

-~ 1- I((n,m Us) u2 I((nns) ),) 2~ 1 19

and a lower bound for voltages and currents is obtained from Equations 82

and 84, using Equation A6 as

Sn,m U, V)2(n,ms u,v 2 nm u,v n,m u,v '2

(160)

n u 2nnm

Since the permutation supermatrix ((P ))is an orthogonal supermatrix, weI'M u,v

have

1(Pn m) u V I I = (Pn m ) il = 1) (162)
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where ((P n) ) is given by the definition in Equation 61 as

n~m ilunmv,

((Pnm n i, ) (163)
n~m),1 (n,rn 2,2

Also,

L(( (s)) )+ ((P ) )]n,m u'v n,m u'v

uvn,m u'v n,m u'v

and (164)

(165)

Substituting Equations 162 and 108 into Equation 165 gives

ll P,m~u,v)': .n~~)UV 1 for s jW (166)

Using Equations A47, 162, 166, and A6 in Equation 164, one obtains

I1t((Sn,m(s)) U'v) u(P ,Uv 1 12 1-I(P~n ~ ~ I

for s jw (167)

Similarly, one can write

nnrn u'v n* n'm u2

for s j w (168)
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Substituting Equation 162 into Equations 158 and 159, and Equations 167

and 168 into Equations 160 and 161, one obtains upper and lower bounds for

voltages and currents at the terminations, which are given (for s jw) by

II(V~0~5)uI~o N5 1+ (s))muv 12I(( s (s))u(19

sn,m ' u v12 1 n u 2

IO o) SI! )1'" (169) I ~ 1]! (5 ~ K.4
nn uu 2 n1 u(s2)(70

fI(~,S)())nf~cE - II('I'P (§,m uv2

1 II,, )II)II
n. + l( U (S 11

/1 II(~(s)))~o1I(Pm ~ :(~ms)uv12
SN El + l( ,())u1 I2 lI+(( n,m(s))U,V)112]11((Vcn(5))u)h12

(12
Fro Euto All n, m~)UV121(nms)~)1 one ca7wit

IM ()s))I
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ICC(Pn,m) )~ (( n Cs))UV 112

-~x ( Cs)) )t*(P ) U (P ) ): ( s~()) )I]max n,m u,v * n,m u,v n,rn u,v n,m u,v

EX [max{(( n,m~s)) ~v : (( n~m (s)) u,,v)}]

- (§n ~s)U ')12 (173)

Substituting Equation 173 into Equations 171 and 172 gives

1 iCC~~s)~U -O ICn ,m u,v'

l((V(O)(S))U)1IcD 2 W1 ( I(nms)~)~ ~Cnms 174)

iCCP0)s))~)I~ >1..Ii(COn Cs)) )11i - IICnm§ s)),)I1
5 n u~vI2 ~ nm u~v )II(2 C)

n/w2[1sl+I(f Cs))u C12K nms))u )1211( Cnm ()U,V)12

The characteristic-impedance supermatrix for the uniform section of a

line in Equation 175 is given by the relation

,m 1,

(n0 (176) ~m(s)22

and the characteristic-admittance supermatrix is given by the relation

*~~0 ( s)) (s))kn~~~ ~

* =C::~yU11 (C(SD,2)(177)
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where (Z (s)) and (c (s)) are the characteristic-impedance and admittance
Cn,m cn,m

matrices of the line.

Thus a lower and an upper bound for the combined voltage waves leaving

junctions, the combined voltage waves entering junctions, voltages at the

junctions, and currents at the junctions can be calculated using Equations 153,

155; 156, 157; 169, 174; and 170, 175, respectively.

'7
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V. BOUNDS FOR A MULTICONDUCTOR TRANSMISSION LINE WITH A BRANCH

Having defined upper and lower bounds for voltages and currents at

terminations of a uniform section of a multiconductor transmission line,

now consider a somewhat more complicated transmission-line net-

work, a multiconductor line with a branch (T-network). All the branches of

the T-network are terminated at their respective ends. Two types of excita-

tions will be considered. In the first type of excitation, the network is

excited by an incident external field, and in the second type, the line is

excited by voltage or current sources at the terminations.

Consider a multiconductor line T-network as shown in Figure 4. The

network topology involves three sections of uniform multiconductor transmis-

sion lines (tubes), and four junctions denoted by 1, 2, 3, and 4. The three

tubes of the network meet at junction 2. The transmission lines are termin-

ated at their respective ends. Let the number of conductors in tubes 1, 2,

and 3 be n1, n2, and n3, respectively, and their lengths be denoted by L 1 2'

and Z 3 respectively. The medium surrounding the network is assumed to be

homogeneous. It is assumed that the junction 2 is to be of zero length, and

there is no direct coupling between branches. The forward and backward

traveling waves on tube 1, tube 2, and tube 3 are denoted by WI and W2 9

W and W4, and W5 and W6, respectively. The combined voltage vectors at

different junctions for various tubes are defined as:

(Vn(O,s)) wave leaving the junction

Junction 1

_(Vn (L2,s))2  wave arriving at the junction

Tube 1 (178)
(V (O,s)) wave leaving the junction

Junction 2

(Vn(Lls))l wave arriving at the junction
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0
(L (s))3

n ,m

23

W W

0Ttihp 1 0Tb

(7~~) JunctionLG

Figure 4. A multiconductor transmission line with a branch.

S(Os ))3 wave leaving the junction
Junction 2

(Vn (L4,s))4  wave arriving at the junction

Tube 2 (179)

~ (0, ))4 wave leaving the junction
Junction 3

(V (39s)3wave arriving at the junction

~N (0,s ))5 wave leaving the junction

Junction 2 {n

(~ L69 wave arriving at the junction
Tube 3 (180)

Junctin nVs ))5 wave leaving the junction

'(V (L 9S))5 wave arriving at the junction
'n 5
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i'a

where L 2 ti L3  L z :2' and L5  = z3. Having defined the com-

bined voltage waves for different tubes, one can now define the propagation

supermatrix, scattering supermatrix, and the source supermatrix for the network.

1. PROPAGATION SUPERMATRIX

For tube 1, the waves leaving and entering junctions are related through

the propagation supermatrix as

(V n(LI's))i ( n,m(s))ii (n,m ) (Vn(O's))l1

(Vn(L 2's ))2 (On,m) (Fn,m(s)) 2 ,2  \(Vn(O',s)) 2

o cn,m
+ L(181)

expL-2 ( s))11 VSIe')dz
0  n,m n

where
Z" : L2 - Z'

2i

(Fn,m(S)),: (F n,m(S))2,2 = exp{-(lc nm (s))z1}

(n,m~ s )  : n,m(S) :(ln,mS)

(7lC (s)) characteristic-propagation matrix for tube 1
cn ,m

Similarly, relations between waves leaving and entering junctions for tubes

2 and 3 can be written as

'1
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(Vs(L (00/ 's) nms), n,m)nO)3

nL49s))4 \(nm) (r (s))4,4 /'n (O's) )4 /
+ f3exp{-(7? m(s)) EL zl]l ( Cs)'(z1 s)) dz' (12

exp{-(T , z}* (r ) dz1'

where

0 nm~s))3,3 (rn,m(s))4,4 =exp{- (i 2  (s))2,2}
n ,m

~cn(s)) 3 (cn (CS))4 = 2 (s)n)~

P~2c (s) characteristic-propagation matrix for tube 2

1.L4 -Z

and

(V (L59s))5 () ~ n,m~s), (0 C~)( Os)) 5

6nmn,m 6,6 (n 60s

fL5 exp{-( cn~ (s))5 [L 5-z']' (Vns) (z',s))5 dz'

+ (183)

cx{- (s)) *. (VyS) (z",s)) dz"
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where

I ~ ~ n~~)), = ~~s) exp{-('(3c ms) 3 1

(s) ( cn,m (s))6 = 3 n ()

(s) characteristic-propagation matrix for tube 3

Note that (F (s)), r (s)) a n m are q x r1l r12 xfln2

(1'ill n,m 3, a n u ms))5,
and n 3 xn3 matrices, respectively, and (71c (s) (2c (s)an

n,m n,m
( c(s)) are nl1 xT11  TI 2 X TI2 and n 3 Xn 3 matrices, respectively.
cn ,m

The network propagation supermatrix ((~ (s)) )and the network source
n,m u'v

supervector can be obtained by combining the results above in the following

manner:

4 4
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S(L

n 29L~s))2

(Vn (L 59s))5

(vn(L62s))6

(1' ()) ( 0 )(0 )(0 )(0 )j
n,m 11 n,m~s , (n~m) n,m n,m n,m

(Onm) On~) (n~m n~~s)4,4(rn,m)), (Onm)

(On~) (n~m (Onm) On~) n~~s5,5(Onm))

((0,) 2 0 ( 0 ()((0

(O (0s)) ()s)
n (n3 14

(V (0 s))S)
n 3 6 n 3(14

Equation 184 can be written in supermatrix notation as

where]
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~(n,m s)u'v) n ~ 1,1( n m ~ ®(2,2 n,m(S)3,3

~n,m())4,4 (D (n,m(S))5,5 EU(n,m(s))6,6 (16

Epropagation superniatrix

and

f2 exp{-Q(K (s))z" [L * ~ )W ') z

fo Cn,m 11

exp{-(%c (s)) 3[z' *Vs'Z"s)d

0(s n= o n 2m

JL exP{-Qi c (s))3 L3z"} 1 * (Vs'z,) z

exp{-()(s)) 5I:L5-z'n 3

f6expf-(%c (s))4z"} (V~s) (z" ,s) )6d
0 n,m

- f 6' for -( us) 2,.6 (187)Z's) d

2. SCATTERING SUPERMATRIX

For convenience in referencing junctions, they are assigned numbers 1,

2, 3, and 4, as shown in Figure 4. For junction 1 where tube 1 is terminated

in the impedance (2ZT n~ s)I the incoming and outgoing waves are related by

the following relation:

(V (0 s)) (Sn (s))(L1,s) )2  (188)
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From Equation 26, the scattering matrix (S (s)) is given by

n ~ 1, =( (s ) + (q T (s))1i [0Uc (s) 0 T (s))J
*n,m n,m n,m n,m

(189)
where

(Tnm(s))i ('Tnm(s))l

and

(Y (s)), =characteristic-admittance matrix of tube 1
cn ,m

Similarly, we can write relationships between outgoing and incoming waves at

junction 3 and 4 as

(VO'))4 n ~ s)4,3 (nL 3's))3  (190)

n (')) (n,m s)6,5 (Vn( 5 ))

(S n,m(s ))4,3 = UYc nm (s))2 + (YT nm(s))21 [(Y nm()2 - nm()2
(192)

(S n,m(s)5 [(= nm (s))3 + (qT ~ (s))31- 1 ui -~ s) ("T nm(s))3]

"1 nm n~ n~m (193)

T (s)) ('Tnm(s))2 1

(Y (s) (n(s)) -

S (s))3 characteristic-admittance matrix of tube 3
n ,m

The outgoing and incoming waves at junction 2 are related in the following

manner:
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/ n(2 ) 2 ( CL iss))l

( s))3 ((Snm(S))uv)2 : (Vn(L4,s))4  (194)

n(O's))5 ((L 6
' s)) 6

where ((Sn,m(s))uv)2 is the scattering supermatrix of junction 2.

It is assumed here that junction 2 contains only wires which are inter-

connected; that is, there are no impedances involved at the junction 2. The

procedure for calculating junction scattering supermatrices in general are

discussed in References 11 and 12. Here the procedure is illustrated

for the case shown in Figure 4. Further, the junction is considered lossless,

i.e., all the energy incident at the junction is reflected and/or transmitted.

At a junction where there are several tubes interconnected to one

another, Kirchhoff's current law and Kirchhoff's voltage law have to

be enforced.

Kirchhoff's current law states that the sum of the currents flowing into

a node is zero. For the case where nlth wire of tube 1 is connected to the

n2th wire of tube 2, and to the n3th wire of tube 3, and these wires are not

connected to any other wires at this junction, one has

(I(O)(s)) r  + (I(O)(s)) + (I(O)(s)) = 0 (195)

n I ' ,1 n2  r,2 n3  r,3

Equation 195 can be put into supermatrix form, i.e.,

n r, 1
tube 1 :tube 2 :tube 3 : ((C0()

(0~~~ 0.. .. 0 0. i. (196)
*' (00 ..... :i*... 0 ... .1:) : !O() (

(f~0~s)) and (y(() s

where (InO)(s)), (I O)(s)) and (r,3)(s)) are current vectors at the

junction associated with tubes 1, 2, and 3, respectively.
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In Equation 196, all elements in the left vector are zero, unless they
correspond to the conductors which are connected at the node. For N connec-

c

tions at the junction, there are Nc equations similar to Equation 196 and

we can define the junction connection supermatrix ((Clm)a) so that

In,m a,b

((Cl )a,b) (O)(s) )r,2 ((On)a) (197)

n r,3

where ((Cnm ) is anN x M. supermatrix, and M. is the total number of
In,m C J 3

conductors entering the junction. In this case, M n, + n2 + n3 .

Kirchhoff's voltage law requires all voltages associated with each con-

ductor to be the same at the same node. Thus for the above example, we have

V(°)(s), - (°)(s) :o
nI 1 r1 n 2  r, 2 0

(198)

vOs,- v(O)(S) : 0n r,1 n3  r,3

If there are M conductors being connected to the same node, there are M-1

equations in Equation 198. Equation 198 can also be written in supermatrix

form as

-(0)
...1 ...0 :0...-1.....o0 0 0..... .0 (V s)

:. ..00 ... 1. ..0.. 0~ 0,1_.70) (VO)() ( = n a)

(0 .. 0 1 .. .. (0() /
(n '~r,3

(199)
where (O)(s))r (vO)(s))r,2 , and (VO)(s)) are voltage vectors at the

Vn (s)r,1' n n, -(0)

junctions associated with tubes 1, 2, and 3, respectively. Here, each row
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Oo-

contains one land one -1, and all other values are zero. Note that the subscripts

1, 2, and 3 on voltage and current vectors denote tube numbers, not

waves.

For Nc connections there are M. -Nc equations. Let us denote the corres-

ponding supermatrix as ((C Vn,m)a, b)

()( s ) ))

Vn rl

((CVnm) a,b r,2 (200)
,m (V(O) (s))r,

n r,

At the junction, the total voltage and current are related to the incident

and reflected voltage waves as

(( )(s)) ((n(S)) r+ + (s)) (201)

((rO)s))) ((Ycn (s))rr2 O [(nS))r) ((Vn(s))r_

r 2 cnm (202)

where (V (s)) and (V (s)) are outgoing and incoming waves on the rthn r;+ . n r;-

tube in the form of combined voltage vectors at the junction, and

((Yc (s)) r,r) 2 is the characteristic-admittance matrix of the junction andn,m

is given by Equation 31 as

3
(( ~ r'2= ~c (s)) 2(203)((cnm (s))r,r.)2 r=l n,m r,r;2

where (Ycn (s))r,r;v is the characteristic-admittance matrix of the rth tube,

* c~n,m rr;
at junction 2.

Using Equations 197 and 202 gives
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~~~~~~~, %67-- -, w ~ ~N.

(( (0 (s) (s)) ~-

In,m ab Cnm r,r 2 n r +

((C~nm a(~: ~,r s)) r-) (204a)
n~m n,rn

Premultiply Equation 204a by a normalizing nonsingular impedance supermatrix

n~m a b

n(nms),m) a(Cb Cnmb r(Yr ns)~r) r-n~)
n~m (204b

(Cv ) ~ I a~ (c) r~r+ (CVn r (ns) 25
nnm nnni

Codsminingr Equats 204 an 205 , giveset

(C ~ ~ ~ ~ ((((s)n(S(C(s)r (05

IC ~a b~ V I
- n,m I:(V()r

((2n~m~)) ) 2

((V ()) ) and((V s)) - ar o(206)
or rn

Cobnn Eqain 2073d25 ie



((C (0ss)

((Cvn~ ab
n ,m

((Zn m~s)a,b ~ : ( 1 n,m a~b ~ : n~ ~ s r,rI)2) ()r
n~m (207)

From Equation 207, the scattering supermatrix for junction 2 is

((~ (s)) ~ 2 =-((CV~ m)a,b) ~r2

\fl n~m

((CV )a ,b)

* (Z ~n ,m 2)(208)

n,m cn,m rr

Note that the normalizing supermatrix (R(~ s)) makesth tw uem risn,m a,b~ h w uemtie

in Equation 208 unitless and well conditioned. Without the supermatrix

((Zn,m(s))ab), the elements of matrix ((C1nm)ab : ((Ycn~ (s)r,r')2 will

be small compared to the elements of ((Cv ab
Vn,m b

For the network of Figure 4, the outgoing and incoming combined voltage

waves at junction 2 are given by

74



((Vn(s))r)+ (Vn(Os)) 3  (209)

/ (Vn(L 1,s))1

((Vn(s))r) O = (Vn(L 4 9s)) 4  (210)
i 'i:!(Vn(L 69s))6

The scattering superniatrix in Equation 208 is of the order M ix M..,
For convenience in properly ordering variables in the scattering super-

matrix for the network, let us write the scattering supermatrix for junction 2

in terms of its block matrices; then using Equations 209 and 210 in Equation

207 gives

-(Vn(Os))2 (Sn,m(S))2,1 (Sn,m(S))2,4 (Sn,m(S))2,6 n(V (LI'S))I

-V n(O,s))3 = (gn,m(S))3,1 0nm(S))3,4 n,m(S))3,6 (Vn(L4,s))4
(Vn(Os))5 (0 n,m(S))5,1 (Sn,m(s))5,4 (Sn ))5,6 (Vn(L6,s)) 6

(211)

Combining Equations 188, 190, 191, and 211, and rearranging the junction

scattering matrices so that the ordering of the components of the incident

and reflected waves is the same as in the propagation supermatrix equation,

one gets
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(V (O,s) )

(V (0,s) )3

(0~,s) )4

(Vn(O,s) )6

n( m) n6()),

= (0 s), ( )~) (O0m (0 (0,~
nim) (nm 1,2)4 (On,m) (Onm (n,m )n~

(Sn~m(s)) 5,1 (On,m) (On,m) ( n,m(s))2,4 (On,m) 6 ~~s),

n,m 31 n,m n,m n,m~s), (n,m 6, n,m 3,

(0 ( 0~ (212)
(V nm ~(L)4. (n~) )mn4

(0 ( (0(
(~m (1 m n6,s)nm6 )6, On

* From Equat~~~Oio 21,tesatrn uemti ftentoki

(V.-2,S)

(V(L 'S

*43
(212

(Vn(L4'76
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n,m u,v
( 0 (S (s)) ( (j((

n,m(Sn,m( S))1,2 (Onm) n,m  n,m  n,m

(Sn,m(S))2,Z (On, m) (On,m) (Sn,m(s))2,4 (On, m) (Sn,m())2,6

: m(S))3' (On 'm )  (On'm) n'm(s))3 '4 
(On 'm )  (Snm(S))3,6

n,m n,m  n,m ) n,m  n,m  n,m

(n,m 5,1 (On, m) n,m n,m S))5,4 (On,m) (Sn,m(S))5,6

n,m n,m  n,m  n,m  n,m(S))6,5 (Onm)

The size of the matrix in Equation 
213 is 2N x2N, where N =n I + (2 + n13

Note that all the block matrices on the diagonal are null matrices.

3. NORM OF THE PROPAGATION SUPERMATRIX

The propagation supermatrix given by Equation 186 is block-diagonal,

with block matrices equal to the propagation matrices of the various uniform

sections of the line (tubes). From Equations A73 and 186, the 2 norm of the

scattering supermatrix can be written as

IJ((1n,m(S))u,v)1I2 =max 11(fn,m(S))r,r 2 (214)

r

where r is the tube number (r = 1,2,3).

The 2 norm of the propagation matrix of a uniform section of a multi-

conductor line was discussed in Section IV.2. For a homogeneous medium

surrounding the multiconductor cable network, from Equation 115, we have

(for s jw)

1(fn,m(S))r,r1i2 : exp{-a r(s)z r} _ 1 (215)

Substitution of Equation 215 into 214 yields
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11(n,m s), v)112 -max~exp{-ctr sWt rlK 1 1 (216)

where the subscript r represents the tube number.

4. NORM OF THE SCATTERING SUPERMATRIX

For passive terminations, the 2 norm of the scattering supermatrix

satisfies the inequality

I( n,m(s)) U V)112 <S 1 (for s = j (217)

because reflected power from all junctions is always less than or equal to

incident power for physically realizable systems (power conservation). The

* following derivation illustrates the proof for Equation 217.

The power-conservation condition can be expressed for lossless tubes

(see Appendix B) as

((n uL u)u Un(Lu ')u* ((n(')u u Un( ) (28

where ((1 (0,s)), ) and ((! (L us)) u) are the combined current supervectors for

waves leaving and entering junctions, respectively.

The combined current vectors are related to the combined voltage vectors

in the following manner:

(O(0s))u) = ((Zcn i(s)) U,) U((' s))U) (219)

((Vn (L,s))) = U2~c (s) u W~( (Ls)) u~(220)

M~' (O's)) =(0~c ,(s)) u ~~(0~ (O's)) u~(221)

§ ((W (L,s)) u =(0~c (s))v (0~ (L,s)) u (222)
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where

((Z (s)) W ( G s))

Echaracteristic-impedance matrix
of the network (223)

The characteristic-impedance matrix for the network is given by

((ZC (s)) ,)

(ZC (s))ll (On,m) (Onm) (Onm) (Onm) (On,m)
n,m

(0nm (2 ()22(n,m) (n,m) (n,m) (n,m)
n~ ~ (s)2 2( )(0 ) 0 (

(0n( ) (2  (s)) 3 3 (Onm) (On,m) (On,m)

(0n~n (Onm (On (Z ,m' O~)(On,m)
(n,m) ,m) (nm) (On,m) (2nms), (On,m)

The previous equation can be written as

6
((2nm Cs)) ,) = ED (2c ~ (s))U, (224)

where ( ( s)) is the characteristic-impedance matrix of the tube asso-c u,un,m
ciated with the uth wave. Substitution of Equations 221 and 222 into 218 yields

n u u cn ~ u,vn u

I ((no )U :(Y (s) ) :((Vn(O5s)) u) 25
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Equation 225 is similar to Equation B5 and, following the procedure of

Appendix B, one can easily prove that, fordiagonal symmetrical loads,

II(Sn,m(S))u,v)112< 1 (for s = jw) (226)

and
S s))u_ (for s = jw) (227)

a. Norm of the junction scattering supermatrix--The 2 norm of the

junction scattering supermatrix given in Equation 211 is less than or equal

to 1. This can easily be proven by following the procedure described above

for the network scattering supermatrix. The 2 norm of the junction scattering

supermatrix of a lossless junction is exactly equal to one. Further, the

junction scattering supermatrix of a lossless junction is unitary (Ref. 13).

The proof of these properties is illustrated in Appendix C.

b. Norm of the scattering supermatrix in terms of its block matrices--

An upper and lower bound for the 2 norm of the scattering supermatrix can be

obtained in terms of the 2 norms of its elementary block matrices using the

relation (Eq. A102) in Appendix A. From Equation A102 the 2 norm of the

scattering supermatrix is bounded by the following relation:

N

, maxL(( n) )' <(( nm(s))u,v) <  max Iivn,m uv)(2SVU,V nmUV12sV

(228)

Note that the block matrices in Equation 213 are of two kinds: (1) the reflec-

tion coefficient matrices at the terminations, (2) partitioned block matrices

of the junction scattering supermatrix. An upper bound for the reflection

coefficient matrices can be obtained from the knowledge of the termination
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impedance and the characteristic-impedance matrices of the tubes, using the

relations in Section HV.S. The junction scattering supermatrix is obtained

from the knowledge of interconnections at the junction.

In Equation 228, due to the presence of factors N sand N, the

upper and lower bounds for the 2 norm of the scattering supermatrix may be

very loose and may not be very practical, since the upper bound for the 2

norm of the scattering supermatrix is one.

5. NORM OF THE SOURCE SUPERVECTOR

The source supervector is given by Equation 187, and using Equation A62

its norm can be expressed as

Iflexp{fe;(i (s))z' } T-((5 (z , ) +_ (s))
0o1 n,m In cn,m i' n

expfc 3s)".[VS F(z ') (2 (s) - ( (z,s))dz'
0 n,m ~ ~ 'n,m,2 2

IIJexp{-Qi' 2c (s)) }( 2n c ()22 2
n nmm 2n

nxp- m2 ()Z}[V (ns'z"s)) - c (s))2,2-(I 2n (Z 's))]dz~la
0o nm 3n ,m 3

lfL 5()[ '1-(Vs )'Z s) ) * (!5)'(z'siIai '

IJexp{- (13c 5s)z }( 3 n ("s)( c m ) 3  ,3 3n5)dI

where (V~s (' W ,s)) and (I rn (z',s)) are the per-unit-length voltage and cur-

rent source vectors, respectively, on the rth tube.
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For a homogeneous medium, from Equations 121 and 122, the norms of the

exponential matrices in Equation 229 are less than or equal to one. Fol low-

ing the procedure used in the derivation of Equation 123, an upper bound for

the norm of the source supervector is obtained as (for s = w)

fJL1 [11(vS)'(z',IS))II1 + 11( (s)),'111 1(1(S) (z-',s))II dze

o 1ncn,m I

2L [II(V~~s( 'zta,s))I11 + 11( (s))2,211 II (1(s) (z",s))j Idz
0 n,m

3'L 1I(s), (Z IS))II + 1I(1 (s))3,1 II(1is)(z',s))I )dz'

10 EI( ) ' (Z",s) I + 11 O (s)) 311 II(!() '(z",s) ) 11Idz
0 n,m

(20
If ~ ~ the, pe-ni-ent votg an11rrntsourc vector s )j aln tetbez a
be exrse as det functions as

La

HOW ( 'W ) 1 + 1 (2 (s )) 11z - d )r n a1 r, 3,1 r a rS'("'

K(230

[7 ten Euati n 23 anb w t n s
*~ r*.8



~ IV'(s)) (71 + IJK Z (5 )1,1I111i(s) (s))CIJJJ

o1 n,m

ax
I (s) (s))a2 111+110Zc (s)) 211 11(1(s (s))2 III

In n,m il I

< 2
a

a2=1 n,m
3mx

3

(231)

Equation 231 can be simplified for the following three special cases:

a. Sources are delta functions; that is, the sources exist only at a

point along the tubes (localized sources). In this case, Equation 231 reduces

to
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n n ,

J(V~s) (z. ,s))I + I(-Z 2'' J(i~s) (Z' IS))I
n ,m

(V~s) (Z.'s))I + I(2~ (s))3 311 j1(fj) (z,s))iI

n,m

_ I(v~(s))II £2 )1+ 11(2c (s~))2,211 11('2( zs)) £

2n n,m

*~~ I(V(S) (Z s) I£ + 1I(2c (s)))s)ff~

II( (S' (.s))I £3+ 11(2c (s))3,311 1('3( (s)) £3n n,m
(233)

b.Sucsaeuiomaogteln.I hscsEuto 3

reduces84

n u

(v( ) ( ) - 2c ( )( ) s 1
In .' . n

(s)~ k + (s (s.s 1



K.c. Sources are rather uniform, that is, the variation of per-unit-

length sources along the tubes is small, In this case, Equation 231 reduces

to

11(0 (s (S)) II

Eli(~ (s))l z2 + I1l ( s())2 Hiit)'(s)I 2mx

In~(~)I 12 + (cn ,m( 1,11111 (Ins) '(z's))l 112]max

I(V(z's)I z3 + li(2c (s))1113l(~s)I]a

[J(0s)'(Z's))jj £3 + 11(2cn (s))~ zs)l ~~a

2n 2, IIII12(n)'(Z'))(234)a
Thsa upe oud o te orc sprvctrca b alultd ronqutin

230~ (S thogh24ints of the2 nors)o)e-ntlnthvlaeurn
souce ectrs3n th vaiu tubes,1 and the) chaacerscimedacmatrce

1edruse in SeounI for th re duervaton fupperlaand o boundsos

scied vcooltage vrogues, and ure simiarctrelationsmforathe pares

nork ch aniu besite.

6. BUD O OBIE OTGS OT-EADCRET

SetosV3adV4etbihdta h om ftesatrn n
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The upper and lower bounds for the combined voltages, voltages, and

currents for a multiconductor transmission line with a branch (Fig. 4) are

given by the following relations (for s j w):

a. Combined voltage vector for waves leaving junctions

(s))

n(Os) ) )u1 1 > " ''~ I 25

,n uu)12 1

YIN- UUO vN[1 + 11((P n,M(s)) uv )I1211((Sn,m(5))u,v) 112]II((Sn,m(5)) u,v)'112

(236)

b. Combined voltage vector for waves entering junctions

1IIOn (L u ) )U)I~o < n uI (237)
1 I(('n ,m(s)) u,v)11211((Sn,m(s)) u,v) 112

II(~(Li5) U v'NE1 !l(F (s) () 1"

C. Voltage vector at junctions

.p(s)

* 1/T~f1 + II((I (s))2)9I
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nuw 2 vTJ~T + l((fn (s))u v)12 II((n,m(s))u,vu 2J

(240)

d. Current vector at the junctions

-. VN )I(~~s)l 1Cm UV112[1+ [I((Sn (s))u )1' 21n us)

II((In (s)))fl >211((n,rn )u,v)1

(242)

)1" .JV.( 
) u) 1. l l(( n m s ) ,
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IS
VI. COMPUTATIONS OF SIGNAL BOUNDS FOR A

UNIFORM MULTICONDUCTOR TRANSMISSION LINE

This section uses the results of previous sections, along with appendices,

to compute upper and lower bounds for the voltage and the current at termina-

tions of a uniform multiconductor transmission line. The examples in this

section will help the reader understand fully the concepts and the procedures

used in previous sections in computations of bounds, and also establish the

tightness of these bounds.

1. PARAMETERS OF THE LINE

First consider a lossless line formed by three conductors plus a refer-

ence conductor (ground) as shown in Figure 5. The multiconductor transmission

line consists of three identical conductors of 0.2 cm in diameter and 20 m

in length above a perfectly conducting ground plane as shown in Figure 6.

The per-unit-length capacitance matrix of the line calculated from CAP

CODE (Ref. 15) is

3.3 -12.94 -12.98

(Cn,m) -12.94 30.23 -12.98 pF/m (243)

12.98 -12.98 30.14

The characteristic-impedance matrix of the line is given by

(Z ) (C, m) 1 (244)
n,m

where v is the speed of propagation on the line. From Equations 243 and 244,

the characteristic-impedance matrix of the line is
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n,m _________________ n,m

z=0 Ground Plane z=L

Figure 5. A three-conductor line over a ground plane.

3

0 0

T1- 0. 4 cm ----

10 cm

Figure 6. Cross section of a three-conduztor line over a
ground plane.
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311.377 234.163 234.941

[ 234.163 3177 234.941]om(25

234.941 234.941 312.953j

From Equation 245, the characteristic-admittance matrix of the line is

0.9069 -0.3882 -0.3894

-2(Y ) =m -0.3882 0.9069 -0.3894 xlO mho (246)

nm (-0.3894 -0.3894 0.9042)

2. BOUNDING RELATIONSHIPS

The four basic equations which determine the upper and lower bounds for

voltages and currents at both terminations of the multiconductor line, as

derived in Section IV (Eqs. 169, 170, 174, 175), are

1/Nr[ + II(S C~ms)) uI)Ii] I((s)(s))I1MVn)m u)v21n u< (247)
ll n,m s) u,V)112 II((§n (s)) u,) 1

1V- lI ( s)UV121 ll n,m su,v)112 11(Vn)s)~l

1 ((f n,m(s)) u,v)H1 2l(nms)~)1

(248)

1[1 - I(S (s)) (s)
II(0i0)s)))I~o ~n,m U'v 11I((Vn (s)) )11".(49

V E 1 + 11(n ~)u~)1 1((§n,m(S")u,,)1I2]
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- 6~.~ P 7--. r

11a l ( ) ElC - l (n,m Cs )u,V)112] n I( ~ ~~ ( )u)
n u)I~ 2 /Ns[i+ fI((Fn,m(s))u~v)II 2 If((Snm(S) u,112] IM(Z~ (s))u 2

n,m

(250)

For a lossless line, from Equation 115, the 2 norm of the propagation supermatrix

is equal to unity, i.e.,

* lI((I'n ,m uv)112 1(2)

Substitution of Equation 251 into Equations 247 through 250 yields]

IIO~~(s)uIo,<1 ~L +"'n ,r u'' 121 n' n u (252)

I. II(Sn(s))uv)2

(Y l(~ (s)) ~ ~~I(nm5)uv)2  iK(n (s)) u)II

(253)

~ )l > ~ - ~ ~ u 100(254)
"n 2

snm

1 El -Ji(Snm(5)) uS)I 12] Cs
+~~~ II(S (()255)I((*; (~)u~)

nm uu 2n,

Note that the expressions for upper and lower bounds in Equations 252 through

255 contain two factors; the first factor depends only on the characteristic

properties of the multiconductor transmission line and the load impedances, and

Z.
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the second factor depends on the distributed sources on the line. For a loss-

less line with resistive loads the first factor is independent of the frequency.

Later in this section are shown the ways to optimize the first factor in

order to improve upon the tightness of bounds.

3. COMPUTATIONS OF SIGNAL LEVELS AND BOUNDS

The upper and lower bounds for the multiconductor line in Figure 5 can

be calculated for various load and source configurations. Let us consider the

configuration shown in Figure 7 where the line is terminated at both ends in

diagonal, resistive loads and is excited by three lumped series voltage sources

at z = 10 m (midway between termination). We will consider the following load

configurations.

Example 1. .Let all the termination resistors be 50 S1 at both ends

the line and all three lumped voltage sources be equal to constant 1 V

each, so that

S50.0 0.0 0.0
S( nm(O's)) = (ZT(L,s)) = 0.0 50.0 0.0 (256)

-,- ~mm0.0 0.0 50.0

and

1

(~)(s)) u) 1 (257)

1
n. 1

The voltages and currents at the loads are calculated using QV7TA code (Ref.

5). The voltages and currents at the terminations are shown in Figures 8

through 19 as a function of frequency. From these responses, note that the

maximum voltage and current are
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30-

2 .

z=O m z=1O m z=20 m

Figure 7. A three-conductor line with diagonal, resistive loads.

I (S))u 'max = 0.5 V

(258)

0I ( s))u x 001 A

Using Equations 252 through 255, compute the upper and lower bounds for voltage

and current, and compare these bounds with the calculated results.

The scattering matrices at the junctions (terminations) can be calcu-

lated from Equations 23 and 24 and are given by

/0.435 0.221 0.222\

n,m(s))1,2 = (Sn,m(s))2,1 = 0.221 0.435 0.222 (259)

0.222 0.222 0.437/

Since the matrix in Equation 259 is real symmetric, its 2 norm is equal to its

maximum eigenvalue, i.e.,

l(nm(s))1,2112 : ((Sm(S))211(2 = 0.879 (260)
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Figure 8. The voltage waveform on wire 1 at z = 0.
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12.0

S10.0
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Figure 9. The current waveform on wire 1 at z =0.

94
K-'



0.56

0.49

0.42

0.35

S0.28

.~0.21

~*0.14

0.07

0.0 _______________ _

0 20 40 60 80 i160 120 140 160
Frequency (MHz)

Figure 10. The voltage waveform on wire 2 at z =0.

16.0~

14.0

12.0

S10.0

S8.0

S6.0

4.0

2.0

*0.04-
0 20 40 60 80 100 120 140 160

Frequency (MHz)

Figure 11. The current waveform on wire 2 at z =0.
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0.49

0.42

'n 0.35
0
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40.21
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0.14
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Frequency (MHz)

Figure 12. ThC. voltage waveform on wire 3 at z 0.
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S10.0

~8.0
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h
1 ~. .Frequency (MHz)

Figure 13. The current waveform on wire 3 at z =0.
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0.49

0.42

-~0.35
4.)

0
> 0.28

S0.21

S0.14

0.07

0 20 40 60 80 10 2 4 6
Frequency (MHz)

Figure 14. The voltage waveform on wire 1 at z =20 in.

16.0 -
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2C 10.0
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* ~0.0 yK
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Figure 15. The current waveform on wire 1 at z 20 mn.
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Figure 16. The voltage waveform on wire 2 at z =20 m.
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.'6Figure 17. The current waveform on wire 2 at z =20 m.
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'0.35-

S0.28-

S0.21-

S0.14-

0.07-
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Frequency (MHz)

Figure 18. The volta~e waveform on wire 3 at z =20 m.
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Figure 19. The current waveform on wire 3 at z =20 m.
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From Equations 107 and 260, one has

i(( n,m(s))uv)I2 = 0.879 (261)

From Equation A60, the- norm of the source supervector is given by

= (1S)(s))u)1i (262)

The eigenvalues of the characteristic-admittance matrix are 0.01295, 0.01295,

and 0.00128; and from Equations 177 and A70, the 2 norm of the

characteristic-admittance supermatrix is obtained as

II((Yc (S))u,v)I12 = 0.01295 (263)
n,m

Similarly, one obtains the 2 norm of the characteristic-impedance supermatrix as

li((Zcnm (s))U,v)112 = 781.27 (264)

Substituting Equations 261 through 264 into Equations 252 through 255, one obtains

the upper and lower bounds for voltage and current at terminations as

i((V°)(s))u)110 , 19.0189 V

ni(( 0°(S))u) II 0.2463 A

(265)

n (( °)(S))u)1l1_ > 0.01314 V

II((!(°)(s))u)11. 0.17 x10-4 A
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As noted earlier in Section III, the upper and lower bounds for voltage and

current in Equation 265 are the upper and lower bounds on the magnitude of the

largest voltageand current at the terminations, respectively. The lower bounds

should not be confused with the smallest voltage and current at the terminations.

First consider a few other terminations before studying the

reasons for the bounds in Equation 265 to be loose compared to the calculated

values.

Example 2. Consider that the multiconductor line in Figure 7 is termin-

ated in resistive loads such that

200.0 0.0 0.0

(ZT (Os)) (2T (L,s)) = 0.0 200.0 0.0 (266)
n~ nm0.0 0.0 200.0

the scattering matrices at the terminations for this case are

-0.0986 0.344 0.345

(Sn,m(S))1,2 = (nm(S))2,1 = 0.344 -0.0986 0.345 (267)

0.345 0.345 -0.0963

From Equations 107 and 267, one has

II((n,m(s )) u,v) 1 2 0.5915 (268)

The maximum voltage and current calculated from QV7TA code occur on

wire 1, and the voltage and current responses on wire 1 are shown in Figures

20 and 21. From symmetry, the responses at z = 0 and z = 20 m are identical.

From Figures 20 and 21, note that
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Figure 20. The voltage waveform on wire 1 at z =0.
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I (V0~(s) =0.5 V
- n u max(29

Y~(O) (s) a 2.5 x103 A

Substituting Equations 262, 263, 264, and 268 into Equations 252 through 255,

one obtains

* II((~~(s))u o 4.7715 V

<0.0618 A

n s) u)_>.02 V

(0)2705

f((n s)~)H00 .6. 7 x 10 A

Example 3. Consider that the multiconductor line in Figure 7 is termin-

* . ated in resistive loads such that

50.0 0.0 0.

(ZTr~ (0,s)) 0. 50.0 00(271)

00 0.0 50.0

(200.0 0.0 20.0/

(T (L,s)) 0 .0 200.0 0.0 1(272)
Tn,m 0.I. 0.

From Equations 259 and 267 one has

(n , = , 0.879 (273)

=S~~s), 0.5915 (274)



From Equations 273, 274 and 107 one obtains

(s ))u,v) = 0.879 (275)

The voltage and current waveforms on wire 1 at z = 0 and z 20 m are shown in

Figures 22 and 23. and 24 and 25, respectively. Because of symmetry, the responses

on wires 2 and 3 are the same as on wire 1. Figures 20 through 23 show that

(v O)(s)) u Imax =0.8 V

n uma
(276)

(IO)(s)) max 0.004 A

Substituting Equations 262, 263, 264 and 275 into Equations 252 through 255

gives n °))u 110 ~ 19.0189 V

II( (0) (s))u )11.0 _ 0.2463 A
(277)

((v(O)(s))uo 11. > 0.01314 V

II((I °)(s)) ) 11, . 0.17 xlo0 A

Note that these bounds are the same as for example 1. The bounds depend mainly

on the scattering matrices at the junctions, and the smaller values of the ter-

minations determine the upper and lower bounds.

Example 4. As the last example, consider that the multiconductor line in

Figure 7 is terminated in its characteristic impedance at both ends, so that

S(ZT (0,s)) = (ZT (L,s)) = (Z (s)) (278)
n,m n,m n,m
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0.15
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Frequency (MHz)

Figure 22. The voltage waveform on wire 1 at z =0.
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Figure 23. The current waveform on wire 1 at z =0.
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0.0
0 20 40 60 80 100 120 140 160

Frequency (MHz)

Figure 24. The voltage waveform on wire 1 at z =20 m.
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Figure 25. The voltage waveform on wire 1 at z 20 m.
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The maximum voltage and current occur on wire 1. The voltage and current wave-

forms on wire 1 at z =0 are shown in Figures 26 and 27. These responses show

* that

I ( n ( s ) ) u I a = 0 .5 V( 
2 9

n u max

The scattering matrices at the terminations for this case are null matrices,

* that is,

nm 1,2 = n,m~ 2, (nm)20

Therefore

(s )) I (281)

Substituting Equations 262, 263, 264 and 281 into Equations 252 through 255 ,

one obtains

V()(s)) )11K. 1.2247 V

1(0) (s 0.18
'~~n u)f__0058 A

(282)

VJ(A ) (s)) _ 0. 2041 V

I(f) (s))u H0  0.26 10- A
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Figure 26. The voltage waveform on wire 1 at z =0.
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Figure 27. The current waveform on wire 1 at z 0.
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4. ANALYSIS OF THE CALCULATED BOUNDS

In Equations 247 through 250, a factor VNW appears because the
s

2 norms of the scattering, propagation, and characteri sti c- impedance supermatrices

are used instead of the -norms. In all four examples, note that the

norms of the scattering matrices are less than one and, for a lossless homo-

geneous case, the norm of the propagation supermatrix is equal to one.

* Therefore, the upper and lower bounds for voltages and currents can be expressed

in terms of the -norms of the other quantities. Following the same procedure

used in the derivation of Equations 252 through 255 yields

1E + IU (s)) ) H ]I(V(5 )(s)) .I I
-2(()() 11 n,m u'V n u (283)

1 -I ((~ (s))
n,m u'v 10

-2 s) + 1 (s~~())uv)o

(284)

- I(( nm(s)) u IIv 110]I((V(s) (s)) )1100
IM n()u1100O 2, ' n u (286)

- l+ I(S~(5)u1 I 00 () uv)10

n~mUm

II((()(cn ,m1s). uv)0 n= 782.835 (288)
n .

.5,.m



The norms of the scattering supermatrices for the four examples considered

earlier are:

a. Example 1--50-,, termination

I((§n,m(s))U, ~,)11.o 0.88 (289)

b. Example 2--200-Q termination

Ii((§n,m(s)) UV )11. 0.7876 (290)

C. Example 3--50-Q and 200-Q termination

I (sm()) U
1 1  =0.88 (291)

*d. Example 4--characteristic-impedance termination

I(nm(s)) LiVIO,=0 (292)

Substituting Equations 287 through 292 into Equations 283 through 286 upper

and lower bounds for voltage and current for the four examples are obtained as:

a. Example 1--50-02 termination

I((V(O)(s)) u)11. 7.833 V

I ( ~s)) [c 0. 1319 A

(293)

J((O) (s)) 0. 0319 V

(s) > 0. 41 10- A
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b. Example 2--200-P termination

11(0n C))~~1~ 4.208 V

(S) 0. 0709 A
(294)

CS)) L) 1  0.0594 V

l((0 (s)) 0. 76 x0. 10x 4 A

C. Example 3--50-Q~ and 200-0 terminations

1(Vn (S) ) U)I 1. .< 7.833 V

I((!( 0)(s)))IK . 0. 1319 A
(295)

l((V(0)(s)) )11,. a. 0. 0319 V

JJ(i~0 (s))l 0. 41 xi10- A

d. Example 4--characteristic-impedance termination

(VO (s 0. 5 V

II((~~ ()1I1_ 0.0084 A
n u

(296)
(s)) ~ )I 0.5 V

n U

() )lI 0. 639 xl1O An

*Comparison of Equations 265 and 293 shows that there is an improvement in the

bounds by a factor of approximately V6s. This is due to the fact that the and

2 norms of the scattering, characteristic-impedance, and admittance supermatrices
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are approximately the same, and when norms of supermatrices are used in Equa-

tions 283 through 286, the constant multiplier v drops out. But in the case

of example 2, this is not the case. A comparison between Equations 270 and 294

shows that there is no significant improvement in bounds when norms are used

instead of 2 norms. For examples 3 and 4, the bounds are improved by a factor

of v6, as is evident from comparisons between Equations 277 and 295, and 282

and 296, respectively.

Note that the upper and lower bounds on voltage for example 4

(characteristic-impedance termination) are exactly equal to the calculated

values. A comparison of bounds with calculated values in examples 1through 4

indicates that tighter bounds are obtained when the termination impedances are

closer to the characteristic-impedance matrix of the multiconductor line. This

is because a factor [1 + Ii((Snm(s))uv) 2 ]/[l -iI((Sn,m(s))u,v)ll2]

appears in expressions for upper bounds on voltage and current and a factor

[1 - IISn,m(s))u'v)I12]/[l + II((Sn,m(s))u,v)II] appears in expressions for

lower bounds on voltage and current. The higher values of the 2 norm of the

scattering supermatrix result in higher upper bounds and smaller lower bounds.

Another source of error in the calculation of upper and lower bounds for

voltage and current is the use of inequality in Equation 132 in deriving the

Equations 247 through 250. For the four examples considered in this section,

the left-hand side of Equation 132 will be calculated and compared with the

bounds obtained by using the left-hand side of the equation rather than the

right-hand side. The modified upper and lower bounds for voltage and current

can be written as
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n1 m U ())( ) 1 IIK (s))~)ix

(297)

n~ "NP IKY )UVI211[((§n,m(s)) U,V) - ((Pn,m)U,v)H!2

__ (298)

V'T II((n,m) u, v) ((mnm(s))uv ((: u~m(s))u )112

II[(( nlm(s)) u~v + (( ,v)]-11 2  (299)

Vs llln,m u,v) (n,m s)u,v) * n,m s)u,v 112

IIEl((§n,m(s)) u,V) - n,m u~v 12 ( (2cn~m~s) ) u, V)112 (300)

From Equations 97, 102, and 114, the superinatrix [((l W ( (s))n,m u,v n,m u,v

: (( m(s)) ,)] is given by

(0 (s)(s ) ,

(ln 2,1 n,m
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The 2 norm of the above matrix is given by

I~~U((s)) u ~ ~ ~ uv (n (s))uv 2

square / 1 ) ~juZS ()

roo t of (1n,m) -e n,m s)2,1

ei gen- nm 12 n,

(U m n,m 12)

-e (in ,S)) (

-square root of
maximum eigen-
value of

2 juZ( (s) -e~zS (
((n~m) +((Sn,m(s))21 -e n,m s1,2 -e nm~s)

-ejk(Sn (s))1, 2 -e- j
2k(S nm(s))2,1 (mnm) +((Snm(s))l,2) 2  n 2

(302)

The 2 norm of the supermatrix [((ln,m)uv) -((Fn,m(s)) u,v * §n,ms)UVI u 1

is equal to the inverse of the square root of the minimum eigenvalue of the

supermatrix [((l n,m) u,v) - ((nms[!,V) : ((§n.,m(S)) s,v)j t : [((1n~m u,v)

W ( (s)) ) ( (s)) ).The supermatrix in Equation 301 and its
n,m u,v n,m u,v

2 norm at 14.375 MHz for the first three examples are obtained as
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a. Example 1-50- ' termination

n,m u'v n,m u'v n ,m u'v

:E(in) u (0 (-nms)) u)Unr(s))

1.2873 0.24155 0.24265 -0.84035 -0.42694 -0.42887

0.24155 1.2873 0.24265 -0.42694 -0.84035 -0.42887

0.24265 0.24265 1.2895 -0.42887 -0.42887 -0.84422

-0.84035 -0.42694 -0.42887 1.2873 0.24155 0.24265)

-0.42694 -0.84035 -0.42887 0.24155 1.2873 0.24265

-0.42887 -0.42887 -0.a4422 0.24265 0.24265 1.2895

(303)

From Equations 303 and All, one obtains

IIE((ln,m) u,v) - f~ms U,V) : §~m )),V)1112 =1.8630 (304)

and

IIU1n~) ~v~- (~nms)) ~ (~ (s)) )1- 3.6626 (305)

b. Example 2-200-Q2 termination
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:~ U' -~ U' :~ ((nm()uv)

1.2471 0.05188 0.05144 0.19048 -0.66456 -0.66649

0.05188 1.2471 0.05144 -0.66456 0.19048 -0.66649

0.05144 0.05144 1.2473 -0.66649 -0.66649 0.18604

0.19048 -0.66456 -0.66649 1.2471 0.05188 0.05144

-0.66656 0.19048 -0.66649 0.05188 1.2471 0.05144

-0.66649 -0.66649 0.18604 0.05144 0.05144 1.2473

(306)

From Equations 306 and All, one obtains

~ uv~ ((n~(s)) ~ (~ (s)) V)12=1.5788 (307)

lIE(('n,m) u,v' ((in,m(s)) ' : ((in,m(s)) U'V)1-111 2.2081 (308)

C. Example 3--50-sl and 200-Q2 terminations

nm , n,m u'v n,m u'v

: ~ U' - (n,m()u~v) : (n,m(5)u'v)

1.2471+30. 0.0512+j0. 0.0514+J0. -0.3249-30.1381 -0.5457+30.0318 -0.5477+30.0318

0.0512+J0. 1.2471+J0. 0.0514.30. .0.5457+30.0318 -0.3249-J0.1381 .0.5477.30.0318

0.0514+30. 0.0514+30. 1.2473.30. -0.5477+30.0318 -0.5477+30.0318 -0.3291-30.1380 (39

*-0.3249+J0.1381 -0.S457-J0.0318 -0.5477-30.0318 1.2873.30. 0.2416+30. 0.2426+J0.

-0.5457-30.0318 -O.3249+J0.1.381 -0.5477-30.0318 0.2416+30. 1.2873+30. 0.2426+J0.

-0.5477-30.0318 -0.5477-JO.0318 -O.3291.JO.1380 0.2426.30. 0.2426+J0. 1.2895+JO.
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From Equations 309 and All., one obtains

l[(n,m u,v) -On,m )u'v) ((n,m(Su'v II2 =1.7318 (310)

ll( nmu,v) - (Onm~) :v ((§nm(s)) ,V] '12 = 2.8479 (311)

The 2 norm of the supermatrices E(~ (s)) )+ ((P ) ]andn,m u'v n,m u'v

[((Sn (s)) ,) - ((Pn ) ,)] for the three cases are obtained as

a. Example 1--50-,-; termination

n,m u'v n,m u'V)1112=187

11U0n,m )u,V) + (n,m u,v Y- 112 =0.8327

(312)

n,rn u'v n,m u'v) 1112 078

IIE((§n,m(s)) U,V) ((Pn,m) ,V 1 1112 =8.264

b. Example 2--200-Q termination

II((9nm(s)) U,V) + ((Pn~m) u,v) ]1'2 =1.5915

1U ( ) + 1P174
Ii~n,m() U'v ((n,m U I 112 =174

(313)

-9n,m u'v n,rn u'v) "2 142

IIE(U n,m(s)) U,V) ((Pn,m) U ]1jj2 2.4479
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c. Example 3--50-2 and 200-.2 terminations

l[ (~ms)) + ((Pn) V ]I= 1.879

n,m u,v 112 =,V 1.2

n~m Uv n~ U~v(314)

n,m u,v n,m u,v) '2 =142

U[( (s)) U (Pn~)uv 112 = 8.2874

Substituting Equations 304, 305, 307, 308, 310, and 311 through 314 into

7. Equations 297 through 300, the upper and lower bounds for voltage and

current for the three examples are obtained as:

a. Example 1--50-' termination

I((V0 )(s)) ~ I 8.429 V

lj(~0(s)) u~c 0.0457 A
(315)

I(O) (s))uI > 0.133 V

l~i(i 0 (s))u)11. 0. 17 x 10- A

b. Example 2--200-Q~ termination

~ 4. 30 3 V

IIIi(s))u )11c 0.0505 A
(316)

II((V(O)(s)) )11,_ 0.0721 V
n u

11(i(O(s) )1. > 0. 68 x10- A
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C. Example 3-50-i2 and 200-1 terminations

SC (s) QI 6.5538 V

(!(0) (s 0.0651 A

(317)
((VO (s) ~ 0. 0657 V

J((J) (s)) 0.II 178 x10~ A

5. SUMMARY OF RESULTS

Since this section presents several examples and various ways of calcu-

lating bounds, they are useful summarized in tabular form, as presented in

Tables 1 and 2.
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VII. CONCLUSIONS

This report has developed a formulation for the computation of upper and

lower bounds on signals at terminations of a multiconductor cable network. The

BLT equation expresses the characteristics of a multiconductor transmission

line network in a single supermatrix notation. The upper and lower bounds on

signals are obtained by using norms of vectors, matrices, supervectors, and

supermatrices. Various norms and their properties for vectors, matrices,

supervectors, and supermatrices are discussed.

Having developed the general formulation for the computation of upper and

lower bounds on signals at terminations of a general multiconductor cable net-

work, two special cases are considered: (1) a uniform section of a multiconduc-

tor transmission line, and(2)a multiconductor transmission line with a branch.

For these two cases, scattering and propagation supermatrices are derived and

their properties are discussed. The norm of the scattering supermatrix can be

estimated for passive terminations. Expressions are derived for upper and

lower bounds on signals for these two cases.

The upper and lower bounds are computed for a uniform three-conductor

transmission line terminated at both ends in diagonal, resistive loads for

several load configurations. A comparison between the calculated values and

these bounds indicate that load values play an important role in determining

the tightness of these bounds. In some cases, the tightness of the bounds can

be improved by using - norms of matrices. Further studies are required to

improve upon the tightness of these bounds.
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APPENDIX A

NORMS OF VECTORS AND MATRICES

This appendix reviews norms of vectors, supervectors, matrices, and

supermatrices. Of special interest are the norms of vectors and matrices

needed to establish lower and upper bounds on the combined voltage waves and

the voltages and currents in the BLT equations, derived in Section II.

A.1 VECTOR NORMS

The norm of a vector (a ) is denoted by 1I(an)If and it satisfies the
nn

following properties Refs. (3,6':

I(an)l! 0 with II(an)ll : 0 iff (an) (On)

11 an) l l 11 (an) II

11(an) + (bn)ll l(an)ll + Il(bn)I (Al)

l(an)lI depends continuously on (an)

where

(an ),(bn) are N-component complex vectors

a is a complex number

ljai= magnitude of a

A common type of vector norm is referred to as the p norm defined by

ll(an) lip - IanIp for any p a 1 (A2)

This has important special cases
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N
(an)Ii an

1/2

(an) 112 anI2 {(an) " (an)*}I/12 - (an)I
n=1 (A3)

I(an)ilo, max Ia. I

1 < n <_N

The 2 norm is then the euclidean norm or magnitude. The = norm or maximum

norm represents the magnitude of the maximum component of the vector. The

1 norm represents the sum of the magnitudes of the components of the vector.

From Equation A3,. one can write

I(an)IJ 1 -> I1(an) 2 - I(an)II=

or, in general

l(a n) (p  -((an)l q  p q (A4)

From Equation A3, one can also write the following relations between, 1, 2, and

norms

7I(an)If I < N I(a,)lI

I(an)II 2 < / I(an)flo (A5)

fl(an)Il 1 <  ll(an)II 2

A.2 MATRIX NORMS

Norms can also be defined for matrices. The norm of a matrix (An) is

denoted by JI(An,m)JI and satisfies the following properties:

(An,m)l 0 with 11(An,r) = 0 iff (A n,m) = (0n,m)

n~niln,m n,ml,(An ,m)I = (a' ((An 2
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II(An m)  + (Bn )f < 11(A )l1 + II(B )l1
nnm - n,m n,m (A6)

"'"n(A n ,m
)  (B n ,m 

)1 I (A n, m) 1 11II(Bn,m ) I{

4 For the above relations to be meaningful, we must have matrices of compatible

order (Ref. 2).

It follows from Equation A6 that if (An) is a square matrix, one has
n ,m

1 (An,m )qj; < (An,m)11q

(A7)

q positive integer

A common way of constructing matrix norms uses the role of matrices in relating

vectors via dot multiplication as in

(b) (A (X)
n n,m n

(A n,m ) N xM complex matrix

(A8)
(Xn) M-component complex vector

(bn) N-component complex vector

. If a matrix norm is defined via

"11 I(A n ,m
)  (X n~

II(An,m)1 : sup ( (A9)(Xn)WO n  II (Xn ) I

sup F supremum least upper bound

which makes the matrix norm a least upper bound over all (Xn) in Equation A8.

The matrix norm in Equation A8 is referred to as an associated matrix norm and

can be thought of as a minimum norm consistent with the chosen vector norm.

"4 Only associated norms will be used in the rest of the discussion.
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For 1 and vector norms, the corresponding associated matrix norms are

given respectively by References 3 and 6.

N
(A= max 5 A I E maximum column
n,m 1 < magnitude sum

(AI)
M:10 1_<max M

II(An)H = ,ma A I maximum row
l<n<N nm magnitude sum

These results apply to general complex N xM matrices.

Corresponding to the vector 2 norm, the associated matrix norm is given by

1I(A n,m) 11 2 ['max((An,m)t  (An,m))1  (All)

where t represents conjugate transpose. Note that all the eigenvalues of

(Anm)t • (An,m ) are nonnegative since this is a positive semidefinite matrix.

For general complex square (N x N) matrices, a spectral radius can

be defined as

p((Bn - spectral radius of (Bn,m )

(A12)

p((Bnm)) I((Bnm))max

where JXJmax is defined as an eigenvalue of (B n,m ) with maximum magnitude.

Having defined matrix norms, we shall now derive relations between differ-

ent matrix norms.

A.3 SPECTRAL RADIUS AND ASSOCIATED MATRIX NORMS

For general complex square matrices, Reference 6 gives

11I(A )I1 p((A ))= X((A M))13
n,m n,m n,m max (AI3)
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so that the spectral radius is a lower bound for all associated matrix norms

(for square matrices).

Equations A13 and All give

jX((A n))Imx: < x {((A )t * (A n~)) 1/2 (A14)

If (Anm is real symm~etric, then

p((A ))m JJ(A n )j1 (A15)

and the eigenvalues of (A )are all real, since (A )is real symm~etric.
n,m n,m

A.4 RELATIONS BETWEEN 1, 2, AND -ASSOCIATED MATRIX NORMS

For an N xM matrix onecan write:

a. 1 and 2 norms_--From Equation A9 , define the 1 norm of a matrix

as

(An,m) sup UIxnI )1 A6
n)

From Equation A16, one has

n,m 1 nIl

Substituting Equation A5 into Equation A16 gives

I(A~ 11 I(A nm) (Xn)I!2

11 ,,~(A ~ m)I 2I(Xn)I 2

< 'M I(AnmI2 (A17)

Similarly, from Equation A9 the 2 norm of a matrix is defined as
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(A(An, m) "( n){ 2 (A18)
IIn, m) II2 = sup ((Xn) II( n) 11 2

From Equation A18, one has

I(An,m) "(Xn)l 2(A9
f(A n, m) 112 -  l(x n ) 112  A 9

Substituting Equation A5 into Equation A19 yields

(An,m) "(Xn)lI
(A Cn, m) }l2 -  (xn ) [[2

l ( A n m l 1 l ( X n l .

-< ' II ( n ) ]12

-< l(An~ ) I  ( A20) .,.
n.,

a.'!

b. 1 and oonorms--From Equation A9, the norm of a matrix is

r.. defined as
|','11 l(A n m) " (Xn ) l

a... ( 2 )"

I(An,m)II = sup (A1)(Xn) u(Xn) I12

From Equation A21, one has

lI(An, m)  (Xn)
II(An, m) l A n)(Xn)l(A

Substituting Equation A5 into Equation A22 gives

n (An,m) " (X n)II 1
I (An,m II (Anm-< (Xn)ll

II n,d Ill I l(Xn) l 11
-< ll(Xn~l

< ( IKAn,m)I 1 (A23)

n~m Cx)
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Similarly, from Equation A16, one has

A II 1 (An,m) * (xn)II I (A24)n,m II(Xn)II 1

Substituting Equation A5 into Equation A24 yields

SAn m\I i < IM (An'm) " (Xn )IIJ

.I1
-4( iAm )

Itm I( Xn)

II (Xn){ 1

<MII (A n,m) (A25)

c. 2 and = norms--From Equation A19, one has

l J(Anm) • (Xn ) IJ2  (A26)I( n, m)I 2 1< '" [(Xn)_II 2

Substituting Equation A5 into Equation A26 gives

(A n,m  (X n )
(A(nm) A2 M V(Xn)

II(xn)II 2_<v I(n,m) I I (n)I
!(Xn)l 2

< v II(Anm)I (A27)

Similarly, Equation A22 gives

jf(An) "
( n ,m)I -<I (Xn ) II=(A28)

Substituting Equation A5 into Equation A28 yields
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(A(An, m) "( n ) I  2an,m) -(Xn)

f(An, m) ]2 I(X n ) I 2-< II 2 (Xn) 2

lI(X )11,

<All (A n ,m) 112 (A29)

The relations between 1, 2, and matrix norms can now be summarized as:

1 l(An,m)l 2 (An,m )  1 (A n,m) 2 (A30)

1(An m )II i.l(An,m) Il < M!(An,m)II 1 (A31)

n,m n,m n,m) II 3

S(An,m (Arn 2 (An,m) 2 (A32)

n,m 2 i(An,m) < (Anm) (A3)

1 11(An,m) 1 (Anm) n m) MK(An,m) 112 (A35)

where M is the number of columns of (An).n ,m
A.5 BOUNDS ON THE NORM OF SQUARE MATRICES

The spectral radius of a square matrix (A n,m ) is bounded by (Ref. 5)

N
p((A ) _ max A (A ) (A36)

n,m nm1 n,ml n,m (A36n m=l

and the spectral radius of (A n,m)1 is such that

n ,m N
1 - - min (IAnn I -An,ml)

n,m  m=1
m~n

or
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P((Anm)' <  1 N (A37)

min (JAn m " 2 Anml)
S. n m~n

Equation A37 gives a bound for the inverse of a square matrix. The norm

of a square matrix is also bounded by the following inequality (Ref. 7):

max IAn,m' 11 (An,m ) II-< N max IA n,m (A38)

n ,m n,m

A.6 NORM OF DIAGONAL MATRICES

In dealing with electronic systems, one often encounters matrices

which are diagonal. The norms of diagonal matrices are relatively simple to

evaluate. For a diagonal matrix, the associated norm is defined as

..T...)I ~ (An m) (Xn)II

II(An nXn)II
(A sup (A39)
(X n) II( n

Equation A39 shows that, for any p norm of the matrix, one has

: I(An'nXn )I(
II (An,m) II P (Xn) su n l n

sup(A9

n

From Equation A40, observe that

l(ARXR)II

max n__n n v : maxiAnn = max IAn m1  (A41)
nf n,m

0: Hence, II(An,m) p  maxlAnm (A42)
nm
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Also from the definitions of 1, 2, and norms for matrices in Equations A10

and All, for diagonal matrices one has

I(An ,m"i= (A ~)111 (An mI max JAn n (A43)

*A.7 NORMS OF [(1I (A ) 1 and [(1l (A )]
n,m n,m n,m n,m

* If (KAn < 1, then one has (Ref. 6)

1IE U ) + (A (A44)
n,m n,m (AF 7 H A4

io prove Equation A44, let (Bnm U [mm + (Anm~' Then,

(lm [(mm + (Anr 1
* (Bnm

or
(B )=(l ) (A )*(B )(A45)
n,m n,m n,m n,m

Taking norms of both sides and using Equation A6 gives

11 (Bnm 11 11 (1m )11 + JI(An 11 11 (Bn ,m1 (A46)

Noting that II(lnm )11 1, from Equation A46 one gets

11 B nm) T 1 1 (A T if I(A n,m)II< <
n ,m

or

+ (A,~)f'II(A47)
n ,m

In Equations A47, replacing (A )by -(A )givesn,m n,m

II[('n,m) -~ ) (A 1 (A~7T if I(A n,m)< (A48)

Note that Equation A48 has used 11(Anm HI = I(A n,m)IL-
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.. i: 1; Corol lary 1

Let (C nm)= e 6 (A nm)

Then [(in,m) - (Cn,m)]- I -ll(Anjm~ (A49)
n1m

Since,from Equation A6,

liej 6 (A n,m)II le J6 1 1(An,m) 1

A II(an,m)II (ASO)

Corollary 2

If (A n,m is such that (A n,m)- exists and I(A n,m)'ll < 1, then
1-1

S(A (A [( +(An)] (A51)

n,m n,m n,m n,m nm

Taking norms of both sides and applying Equations A6 and A47, one gets

+ (A II (An,m)

iE (In,m) n,m) ]-l <m1 (A52).?:.-";"I - 11 (A n,m)- {

A.8 CONDITION NUMBER OF A MATRIX

The quantity II(An,m)II II(An,m)'lf1 is defined as the condition number of

(An m) and is denoted as K((Anm) (Ref. 6). These numbers, defined for vari-

ous matrix norms, give a measure of the condition of (A n,m ) and are always

greater than or equal to 1. This can be seen from the following:

K((An,m)) II(An,m)II II(An,m)'l 1 (A53)

From the property Equation A6, one has

I(An,m) (B)II II (An,m) II I (Bn,m)I (A54)

135

.'-.L



Let (B ) (A (A55)n,m n,m

Then from Equation A54 one has

I ~ ~~~and since 11 A(Y*'i~

one has

11 (A nm )11 I(A nm)-'I 1>2 1 (A56)

Equation A56 is valid for any associated matrix norm.

A.9 NORMS OF SUPERVECTORS

Section IT introduced supervectors or divectors whose components

are vectors and are defined in the form

((a n)u) (A57)

with elementary vectors as

(an~

n = 1,2,... ,N~ (A58)

5'The elements of supervectors are designated as

an; (A59)

From the definition of vector norms as defined in Equations A2 and A3, the p

6 norm, 1 norm, 2 norm, and norm of a supervector can be defined in terms of

their elements as
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N

11((a n)u)II 2 a n~ p NL2

=1

11I((a n)u)If 1 Ea nlu

Not tatth nrm i Equtio (A6atsyprprie0f)qaiol

N. u

IK~a)~)I ~,= I( I~an~II UI2

*~~~ II(a) 12 InI
u=1

* i(andu )II, max [a nul
1- Nu

<L- u137



From Equation A62 can be written the following property for supervector (same as

Eq. A4 for vectors):

I((andu) z z((a n)u)f 2~ z ((a n)u)H (A63)

or, in genera)lpq (64

Similar to properties of Equation A5 for vectors, we can write the following

relations for supervectors from Equation A63 as

II(n u)I 1 ~N I n) u)I

I((anul 2 !((an)I (A65)

n u ~ I(n)u)f 2

*where N
Ns N (A6 6)

u= 1

A.10 NORMS OF BLOCK-DIAGONAL SUPERMATRICES

Block-diagonal supermatrices were introduced in Section II. A block-

* diagonal supermatrix is defined as

(A n,m) 1,10

(A )
((A n) ) =n,m 2,2 (A67)

n,m N,N
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where (A ) are square matrices of size N x N .The block-diagonal super-
n,m u'u u u

matrix in Equation A67 may be represented in terms of the dietsu aas

K:((A n,m)u~ ~ (A n,m) 1, (E)(A nm)2,2 (j) ®(n,m)N,N

N

-'~~ u) (Anmuu (A68)

Since ((A ) )is block diagonal, its 1 and norms are given by
n,m Uu u

I((A n,m)u,u) I max 11(A nm)uul 1 (A69)]

The 2 norm of ((A ) )is given by
n,m Uuu

I((An mIuu)Il{((A :((A ) } (A70)
Sinc UU12 = mx n,m u,ut n,m u,u)1

N t
(An,m u,u ) ( n,m u'u) uW n,m u,u (An,m u,u (A1

and eigenvalues of

((A n,m) u,u,)t :((A n,m) U = eigenvalues of {(A n~m) j'u (A n,m~ u,ul:

Then from Equations A70 and A72, the 2 norm of ((A ) )is given by
n,m Uuu

II(n,m u'u) 2 =max[Xmax{(An,m)tu,u *(n,m) u~i 2

u

=max I(A ~uu
u n,m '12

u = ,,. N(A73)

Thus the 2 norm of a block-diagonal supermatrix is simply the maximum 2 norm of

its block matrices on the diagonal.
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A.11 NORM OF AN EXPONENTIAL FUNCTION OF A SQUARE MATRIX

If the power series

f(z) C X (A74)
k=O

in a complex variable z converges everywhere, then the matrix power series

~C(Anm (A75)
k=O

in an N xN matrix (A )converges absolutely (Ref. 8).n,m

In the scalar case,eZ is defined by

eZ = + z+ _Lz 2 + L Z3 1 = i (A76)

Since the power series

k (A77)

converges everywhere, the matrix power series

converges absolutely for any square matrix (A ).The exponential functionn ,m

of a matrix can thus be defined for every square matrix (A n m by

(A)2 3
n~ (n,m)+(n,m)+ 2! (n,mi 3! n,m ~*

F 1(An m k (A79)

Using Equation A6 in Equation A79 one can write

(A)12 1"
Ile n Im " II('n,m)I +IAn,m) I1 TIn,m) 3!~i n ,mi

co 111(A k II(A80)
= L~TII(n,m)I

kzO
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Substituting Equation A7 into Equation A80 we get

ie (A n m) ii~ l~n)II + II(Anm11 + TI(An r)11 2 + +l(An m1l 3+

(A IICA )I11

k= J(A,,,)u me nm(A81)
Therefore,

lie(A m1 S e (AmI (A82)

Similarly, for an exponential function of (A nm)t we can write

11 (An ) II Itl
e for all finite t (A83)

Note that, in general,

e{(A n,m )+(B n,m ))t #e(A nm)t e (B nm)t (A84)

unless (A nm) and (B nm) commute, that is,

n,m n,m m '

From the above discussion, onecan conclude that if a function of a square matrix

(An'M) can be expressed as a convergent infinite series as

f((An~) 00kAn )k (A86)

then

A.12 NORM OF FUNCTIONS INVOLVING INTEGRALS

Consider a vector expressed as an integral as

6z

(anW ( (z)))) (b~ (z')) dz' (A88)

0
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7.7,1

Taking norm of both sides of Equation A88 we get

rz
11I(a (z))II = 11 (An (z')) * (b (z')) dz'II (A89)

The norm of the integral in Equation A89 satisfies the following inequality

(Ref. 9):

IIJz (A nm (z')) *(b n (z')) dz'l f~ j 11 (A nm (z' )) 11 I (bn (z')) II dz'
z0 z0

(A90)

Substituting Equation A90 into Equation A89 gives

I(a n(z))I 11 j(A nm(z'))II 11(b n(z'))I11 dz' (A91)
fz

Equation A91 is an important relation which is very useful for many physical

problems which often involve relations of the type in Equation A88.

A.13 NORMS OF SUPERMATRICES

Norms of supermatrices can be expressed in terms of norms of their block

*matrices. The 1 and -norms of a supermatrix can be expressed in terms of 1 and

norms of their block matrices in the following manner:

N

max I(A m ~ ~ I((An) )I< max Y1I(Anmuv (A92)

6 M
max I(A ) I<I((A )v)wSmax I(AnmuI (A93)

uV n,m u,v n,m 1~v u<N v-i nm~ lc

V.where (A ) is an elementary block matrix (N x N )of ((A ) )
n,m U,v u v n,m u,v

(A ) in general is rectangular.
n,m u,v
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The relations between 1, 2, and norms of supermatrices, similar to Equa-

tions A30throughA35, can be obtained by following the procedure in Section A.4,

and the resulting relations are:

lI1((An,m)u,v)I 2 < I((An,m) u, v)l 1 <vs II((Anm) u,v)[ 2 (A94)
Is

S

Ns i(An,m u'v~l  < (n,m u'v)I 1 sI (n,m)u,v)I (A5

1 l((Anm v)  <l((Anmuvl < ~ l(Anmuv I i (A96)
n~ , I' n- )uv 2 -I ~muv

!l((A n,m ) v)  < ((A n, m) ,v)l 2 v s l((A n,m)u,v)I (A97)

5 ((An,m uv) 2< !I((An,m)u,v)I <11 s Il((An,m)u,v) 12 (A98)

ilI((An,m)u )I < I((An,m) v)Il <N s((Anm)uv)l1 (A99)N s  , U v 1 - u ,v n - s 1l

where Ns is the number of columns in the supermatrix, which is equal to the

size of the supermatrix for the rectangular case.

From Equations A92 and A96 one gets

N N
1max 11 i(A n,m)u,vll 1 11 H((A n,m)u,v)l 12 _<V~s max (A n,m)u, v ill

VIIS u'v u=1 v u=l
(AIO0)

Similarly, from Equations A93 and A97 one gets

M M

1ma % I(n,m)u,vl n ll(nm) u ,v) [2 -< fs ma (An,m) u, v I
/Ifs u'v v=1 u v=1

(AIOI)
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Substituting Equation A30 into Equation A100 and Equation A34 into A101,

respectively, yields

1 Na Am

M

/F v/F n,rn u v112 J((A ma)A(13

YS /V

where N is the number of columns in the u,v block matrix (An )uv

Equations A102 and A103 give the 2 norm of a superniatrix in terms of the

2 norms of its block matrices, and Equations 92 and 93 give the 1 and - norms

of a supermatrix in terms of 1 and norms of its block matrices, respectively.
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APPENDIX B

TWO NORM OF THE SCATTERING MATRIX AT A TERMINATION
OF A UNIFORM MULTICONDUCTOR TRANSMISSION LINE

From the power conservation, the reflected power from a passive termina-

tion is always less than or equal to the incident power for physically realiz-

able systems. The power-conservation condition can be expressed in terms of

the combined voltage vectors for waves leaving and entering the termination

(for s jw) as

Re[(Vn (s)) (In(S)) ] <Re[(Vn(s))"• (I (s))* (BI)

where (Vn(s))+ and (V n(s))- are combined voltage vectors for waves leaving and

entering the termination, respectively, and (n(s))+ and (In(s)) are combined

current vectors for waves leaving and entering the termination (junction). The

• represents a complex conjugate. Currents are positive into the junction.

Equation B1 can be rearranged to give

Re[(!In(S)) + • (Vn (S))+] < Re[(I n(S))* •(Vn(S))_] (B2)

The combined voltage and current vectors are related through the characteristic-

admittance matrix of the transmission line as

(In(s))+ = (Y (s)) n (V(s)) + V (Yc (s))T (B3)Cn,m n,m

(I s(s)) = (Y (s)) - (V (s)) = (Vn(s)) • (Y (s))T (B4)n cn ,m n - n - cn,m

If (Y (s)) is real, that is, the line is lossless, then substitution of
cn,m

Equations B3 and B4 into B2 yields
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(Vn(s))+ *(cn, (s)) P(V ) ( !L -V~s T *~

n~m n~m(B5)

Since the characteristic-admittance matrix is symmetric, Equation 85 reduces to

(V()4 s ()) 0 ~(s)) ( (s)) ( fl)*
n n mn + nC ,m n (B6)

if (Y (s)) is a real, symmnetric matrix, it can be expressed as

(Y V (s)) =(A n(s)) *(An (s)) (B7)

in which (A (s)) is a real, symmietric matrix, and is defined asn ,m

(A (s)) =(Y (s)) 2 (88)
n~m Cn,m

Substitution of Equation 87 into 86 yields

0 s),(s)) (s) ( V (s) A () ~)* (9n n,m n,m n

Let

(B (s))_ (A (s)) (V (s))_ (811)
n - n,m n

Substituting Equations 810 and 811 into 89 yields

(Bn (s)) + * B(s))* . (s)) - ~(s))* (812)

4The combined voltage vectors for waves leaving and entering the terminations

are related through the scattering matrix (~(s)) of the termination asn,m

(for s = .w):
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(Vn mnn m

(Bns) = ~ s)*(s))s) T ~ (B14)
Df ne (§n(s)) >'ns) (6~ ) *(§nm(s))

Substitution of Equation 814 into 812 yields

(B(s))- (5'-(s))T ('n.,(s))* *(B ~)) . (gn(s))- (n )*

(B15)

For any eigenvector (X n (s)) of matrix (S'm T * (§'~m(s)) with eigenvalues

X11  one obtains

n ( t()T n,m~s))* (Rn~s))* Xn(X(s)) (~))* (16

But according to Equation C15

(R (s) (s))* (i (~ s)) * R (s))* (B17)

Therefore,

X ( n(s)) . xn Cs)) * (RnCs)) (Xn (s))* (B18)

or

X 1 (B19)

Also, Xn 2 0 since (Si ()T*( (s))* is Hermitian.nn,m n)m

Since Equation 818 is true for any eigenvalue, one has

T*

X ( (s))T ( (i))* } 1 (B20)
max{ n,m n,m

-~ Hence

(§n',m(s))I2 1 (821)
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Substituting Equations B10 and B11 into Equation B13 gives

(An m(s))-I  (Bn(S))+ (Sn(s) (An,m(s)) -  (Bn(S))_

or
(B n(S))+ :(A n,m(S)) •Sn,m(S)) •(An,m(S))-1 •Bn(S))_ (B22)

By comparing Equations B14 and B22, one can write

(S',m(S)) = (A n,m(s)) (n,mS)) • (A n,m(s)) (B23)

Since the matrix (S' (s)) is obtained by performing a similarity transforma-Sinc thematrx (n,m (

tion on the matrix (n,m (s)), the eigenvalues of (S',m(s)) and (n,m(s)) are

equal.

For diagonal, symmetrical loads the scattering matrix (SnmS)) (givenn,m

by Eqs. 23 and 24) is symmetric and hence

I( n,m(S)) 12 max(Sn,m(S) (B24)

By taking the transpose of Equation B23, one obtains

=(n * (s ()) T *(A (s)) (B25)
(gn,m(S))T  (An,m(S)) n,m n,m

Since, for diagonal, symmetrical loads, the scattering matrix is symmetric,

Equation B25 reduces to

(§n (S))T = (An(S))"  * (S(S)) • (A (S)) (B26)

n(mn,m ' n,m 'n,m

For a multiconductor line of symmetrical configuration with diagonal, symmetri-

cal loads, one has

(s)) ( )) (s)) (s))
Cn,m n,m n,m cn,m
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or

(n,ms) (n,ms) §n,ms) §n,ms) (n,mn ) (n,ms)
(B27)

Equation B27 can be rearranged to give

(A (s)) * ~ (s)) * (s())4 ( (s))-1.( (s)) * A (s))
n,m n,m n,m n,m n,m fl~m

(B28)

By comparing Equations B23, B26, and B28, one obtains

(~ ())T (~' Cs))(B29)
(n,m~s) =(n,ms)

i.e., the matrix (S' C~s)) is symmnetric.

Therefore,

!(Sn,m~s)) )2 =l(§n,m(s)) 2 (B30)

and hence,

ICSn (s)) 2 (B31)

From Equation A56, the condition number of the scattering matrix is given by

ll(~~m~s)l~l(~nm~sY' [ 11

or

i( n,m (s))- 1112 >~ 11(2 (B32)

From Equations B31 and B32, one has

(~n )) 11 .1(B33)
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APPENDIX C

TWO NORM OF THE LOSSLESS JUNCTION SCATTERING SUPERMATRIX

From the power conservation condition, the reflected power is equal to

the incident power for a lossless junction (a junction with interconnection

of wires only). This power-conservation condition can be expressed as (for

lossless tubes and s = jw)

((Vn(Lu ,s))u)v : ((c (s)) T ((V (Lu ,s))u)

Cn,m

((Vn(Os))u)v: ((Yc )T (L S))

n,m '

(Cl)

where the subscript v is for the vth junction.

If ((c (s))uv) is a real, symmetric supermatrix, it can be expressed,m

as

((Yc (S))u,v)v = ((An,m(s))u,v) : ((An,m(s))u,v)V (C2)
n,m

in which ((A n,m(s))u) is a real, symmetric matrix, and is defined as

((n,m (s))u) = ((0 (s)) )2 (C3),m v

Substitution of Equation C2 into C1 yields

(0Vn(LuS))u) (ms))u~ (Anms))u) (0 (V(LuS))u)
n u u v n,in u'v n,m1 u'vv n u u v

n u(v n,m u,v n,m u,v)V n uv

(C4)
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Let

((L ,s)) ) ( s)) ) ((L ,s)) )(C5)
n u uv n,m u,v V n u u V

(§(O,s)) U = ((An (s)) ,)) ((Vn(O,s))U)V(6

Substituting Equations C5 and C6 into C4 yields

n u u v n u uN n uv n u V

The combined voltage supervectors for waves leaving and entering the junction

are related through the scattering supermatrix of the junction as

(n o)uv ((n,m )u,vv n (Lu s)Uv (C8)

Define a scattering supermatrix ( n' Cs))u ) so that

n (n,m s)u,v V n u u v (9

Substitution of Equation C9 into C7 yields

((e (Lu (s) IS)) (s) (B (Lu 9s)))

n u u V (n,m s)u,v'v ((n,m u,v: n u u

or

T
n u u V n,m u,v V (n,m su,vv nfl u

(( L s)) )*=((0 ) )C11)

This equation can hold only if
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,I 
I

T((SnCm(s)) ( : )u,v)*= ((ln,m)u,v )v
or n1

((n,m(S))u,v) = ((Sn,m)u,v C12)

since (( n(L ,s))u~ is not zero.

The result in Equation C4 is the definition of a unitary matrix. From

the definition of the 2 norm of a matrix (Eq. All), one obtains

II((Sn,m(S))u,v '211 = (c13)

For lossless tubes and lossless junctions, the scattering supermatrix

((Sn"m(S))u'v )  is real. I
If all the multiconductor lines (tubes) connected to the junction v are

identical, thescattering supermatrix (s )) will besymmetrical (Ref. 12).

From Equations C5, C6, C8 and C9, it can be shown that

(uv = ((sn,m(S))uv), : (( (S))u) (( nms)) )-1

,nm uvv ,v
(C14)

Since the matrix ((S',(s))u v) is obtained by performing a similarity trans-

formation on the matrix ((Sn(S)) ) , the eigenvalues of these two matricesn,m uV v

are equal.

-4

Further, following the procedure in Appendix B, it can be shown that, for

symmetrical configurations of multiconductor lines at the junction, the junc-

tion scattering supermatrix is symmetrical; therefore,

SI((mn,m(5))U'VvI2 = II ,m(s))u,v)v1I2 = 1 (c15)
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